a2 United States Patent

US009219923B2

(10) Patent No.: US 9,219,923 B2

Pandit et al. 45) Date of Patent: *Dec. 22, 2015
(54) TILING IN VIDEO ENCODING AND (56) References Cited
DECODING
U.S. PATENT DOCUMENTS
(71) Applicant: THOMSON LICENSING, Issy de .
Mouli FR 5,193,000 A 3/1993 Lipton et al.
oulineaux (FR) 5,915,091 A 6/1999 Ludwig et al.
(72) Inventors: Purvin Bibhas Pandit, Franklin Park, (Continued)
NJ (US); Peng Yin, Ithaca, NY (US);
Dong Tian, Boxborough, MA (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: Thomson Licensing, Issy les EI]:: 1?%?;?2 ligggz
Moulineaux (FR) .
(Continued)
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by O days. Wimmer, Peter “Stereoscopic Metadata Format Specification”. Ver-
This patent is subject to a terminal dis- sion 1.3, Jul. 8, 2006, http://www.3dtv.at.*
claimer. (Continued)
(21) Appl. No.: 14/735,371 Primary Examiner — Sath V Perungavoor
(22) Filed: Jun. 10. 2015 Assistant Examiner — Jeffery Williams
’ (74) Attorney, Agent, or Firm — Robert D. Shedd; Paul P.
(65) Prior Publication Data Kiel; Xiaoan Lu
US 2015/0281736 Al Oct. 1, 2015 (57) ABSTRACT
Related U.S. Application Data Implementations are provided that relate, for example, to
(63) Continuation of application No. 14/300,597, filed on ~ View tiling in video encoding and decoding. A particular
Jun. 10, 2014, which is a continuation of application method includes accessing a video picture that includes mul-
) tiple pictures combined into a single picture (826), accessing
(Continued) information indicating how the multiple pictures in the
accessed video picture are combined (806, 808, 822), decod-
(51) Int.CL ing the video picture to provide a decoded representation of at
HO4N 13/00 (2006.01) least one of the multiple pictures (824, 826), and providing
HO4N 19/597 (2014.01) the accessed information and the decoded video picture as
(52) US.CL output (824, 826). Some other implementations format or
CPC e, HO4N 19/597 (20141 l) process the information that indicates how mu]tip]e pictures
(58) Field of Classification Search included in a single video picture are combined into the single
CPC HO4N 13/0003; HO4N 13/0007; HO4AN video picture, and format or process an encoded representa-
21/434 tion of the combined multiple pictures.
USPC oot 375/240.01, 240.25

See application file for complete search history.

4 Claims, 28 Drawing Sheets

US 9,219,923 B2

Page 2
Related U.S. Application Data WO WO02007126508 11/2007
WO W02008024345 2/2008
No. 12/450,829, filed as application No. PCT/ WO WO02008127676 10/2008
US2008/004747 on Apr. 11, 2008, now Pat. No. WO WO02008140190 1172008
8.780.998 WO WO2008150111 12/2008
’ ’ : WO WO2008156318 12/2008
(60) Provisional application No. 60/925,400, filed on Apr. %8 wg%g?ggi‘?zg ; ‘l‘gg?g
20, 2007, provisional application No. 60/923,014,
filed on Apr. 12, 2007. OTHER PUBLICATIONS

FOREIGN PATENT DOCUMENTS

U.S. PATENT DOCUMENTS

References Cited

(56)
6,055,012 A 4/2000
6,157,396 A 12/2000
6,173,087 Bl 1/2001
6,223,183 Bl 4/2001
6,390,980 Bl 5/2002
7,254,264 B2 8/2007
7,254,265 B2 8/2007
7,321,374 B2 1/2008
7,391,811 B2 6/2008
7,489,342 B2 2/2009
7,552,227 B2 6/2009
8,139,142 B2 3/2012
8,259,162 B2 9/2012
8,885,721 B2 11/2014
2004/0028288 Al 2/2004
2005/0117637 Al 6/2005
2005/0134731 Al 6/2005
2005/0243920 Al 11/2005
2006/0176318 Al 8/2006
2006/0222254 Al 10/2006
2006/0262856 Al 11/2006
2007/0030356 Al 2/2007
2007/0041633 Al 2/2007
2007/0121722 Al 5/2007
2007/0153838 Al 7/2007
2007/0177813 Al 8/2007
2007/0205367 Al 9/2007
2007/0211796 Al 9/2007
2007/0229653 Al 10/2007
2007/0269136 Al 11/2007
2008/0199091 Al 8/2008
2008/0284763 Al 11/2008
2008/0303895 Al 12/2008
2009/0002481 Al 1/2009
2009/0092311 Al 4/2009
2009/0219282 Al 9/2009
2010/0026712 Al 2/2010
EP 1581003
EP 1667448
EP 1729521
EP 2096870
EP 2197217
JP 2004048293
JP 2008034892
JP 2009182953
KR 1020020026250
KR 20050055163
KR 100535147
KR 1020090102116
RU 2006101400
RU 2007103160
WO WO09743863
WO W09802844
WO WO00193596
WO WO00225420
WO W02006001653
WO W02006041261
WO WO02006137006
WO WO02007046957
WO WO02007047736
WO W02007081926

Haskell et al.
Margulis et al.
Kumar et al.
Smith et al.
Peterson et al.
Naske

Naske et al.
Naske

Ttoi et al.

Xin et al.
Wang

Bamyji et al.
Kim et al.
Tourapis et al.
Edgar
Routhier et al.
Lee et al.

Murakami et al.

Martin et al.
Zandi et al.
Wu et al.
Yea et al.

Bhaskaran et al.

Martinian et al.
Pons et al.
Yang

Deman et al.
Kim

Matusik et al.
Naske

Srinivasan et al.

Someya et al.
Akka et al.
Kim et al.
Kim et al.
Kim et al.
Aliprandi et al.

9/2005
6/2006
12/2006
9/2009
6/2010
2/2004
2/2008
8/2013
4/2002
6/2005
12/2005
9/2009
6/2006
8/2008
11/1997
1/1998
6/2001
3/2002
1/2006
4/2006
12/2006
4/2007
4/2007
7/2007

Meessen et al., “Content Browsing and Semantic Context Viewing
Through JPEG 2000-Based Scalable Video Summary,” IEE Proceed-
ings of Visual Image Signal Processing, vol. 153, No. 3, Jun. 2006,
pp. 274-283.

Martinian et al., “Extensions of H.264/AVC for Multiview Video
Compression”, 2006 IEEE International Conference on Image Pro-
cessing, Oct. 8, 2006, pp. 2981-2984.

Wimmer, “DV/HDV Tape Drive Synchronization” Steroscopic Dis-
plays and Appllications Conference, Jan. 29-31, 2007, San Jose, CA,
pp. 1-20.

Wimmer, “Stereoscopic Metadata Format Specification,” Version
1.3, pp. 1-9, http:www.3dtv/atpffoce@3dtv.at, Linz, Austria, Jul. 8,
2006.

Wimmer, “Stereoscopic Movie Disk, 3DTV” Two Posters, Johannes
Kepler University, Linz, Austria, Nov. 27-28, 2006.

Wimmer, “Stereoscopic Player and Stereomultiplexer,” a Computer-
Based System for Stereoscopic Video Playback and Recording,
Johannes Kepler University, Linz, Austria, pp. 1-9, Nov. 27-28, 2006.
Wimmer, “Aufahme und Wiedergabe Stereokopischer Videos im
Anwendungsbereich der Telkooperation,” Linz, Austria, pp. 1-12,
May 2004.

De Bruyne et al., “Enhanced Shot-Based Video Adaptation Using
MPEG-21 Generic Bitstream Syntax Schema”, Proceedings of the
2007 IEEE Symposium on Computational Intelligence in Image and
Signal Processing (CIISP 2007), pp. 380-385.

Droseet al., “Extending Single View Scalable Video Coding to Multi-
view Based on H.264/AVC,” IEEE International Conference on
Image Processing, Oct. 8-11, 2006, Atlanta, Georgia.

Library of Congress, “American Memory”, http://memory.loc.gov/
ammem/help/compression.html Oct. 24, 2007, 1 page.

Li et al.,, “A Novel Multi-View Video Coding Scheme Based on
H.264,” ICICS-PCM 2003, Dec. 15-18, 2003, pp. 493-497.
Costello, “Exit Orientation Tag (Feb. 17, 2002)”, Internet article:
http://web.archive.org/web/2002207 140004 1 7/http://sylvana.net/
jpegerop/exif orientation.html, 3 pages.

Vetro et al., “Joint Draft 2.0 on Multiview Video Coding,” JVT of
ISO/IEC MPEG & ITU-T VCEG. Document: JVT-V209, 22nd
Meeting: Marrakech, Morocco, Jan. 13-19, 2007.

Adaptive Picture Flipping Coding, Tomokazu Murakami, Hitachi,
Ltd., Jul. 26-Aug. 5, 2005, Working Party, Yokohama, Japan.
Motorola, “3D Cinecast: A Curation About New Media Technolo-
gies,” Overview of MPEG Standards for 3DTV, Apr. 21, 2010.
Vetro, “Frame Compatible Formats for 3D Video Distribution”,
Mitsubishi FElectric Research Laboratories, TR2010-099, Cam-
bridge, Massachusetts, Nov. 2010.

Motorola, “Overview of MPEG Standards for 3DTV”, White Paper,
four pages.

Pandit et al., “High Level Syntax changes for MVC”, Joint Video
Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/
SC29/WG11 and ITU-T SG16 Q.6), 22nd Mtg., Marrkech, Morocco,
Jan. 13-19, 2006, Doc.: JVI-V054, pp. 1-10.

Murakami et al., “Adaptive Picture Flipping Coding on KTA Soft-
ware”, ITU Telecommunications Standardization Sector, Study
Group 16 Question 6, 31st Mtg., Marrakech, MA, Jan. 15-16, 2007,
Doc. VCEG-AEL7, p. 1-4.

Technical Standardization Committee on AV & IT Storage Systems
and Equipment: Japan FElectronics and Information Technologies
Industries Assn: Exchangeable Image File Format for Digital Still
Cameras: Exif Version 2.2, Apr. 2002, pp. 1-18.

Sullivan, et al. “Constrained Baseline profile and supplemental
enhancement information” JVT of ISO/IEC MPEG & ITU-TVCEG,
29th Meeting, Busan, KR, Oct. 12-17, 2008.

US 9,219,923 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

HDMI Licensing, LLC., “3D Portion of the HDMI Specification
Version 1.4”, Press Release Jan. 26, 2011, 2 pages.

Dickson, “NAB 2010: Grass Valley Unveils New Ignite Automation
Product”, Broadcasting and Cable, Apr. 12, 2010, 1 page.

Fehn et al., “An Evolutionary and Optimized Approach on 3D-TV”,
2003, pp. 1-8.

Fehn et al., “Study of Some MPEG Tools Related to 3D-Video”,
Inernational organisation for Standardisation, Coding of Moving
Pictures and Associated Audio Information, ISO/IEC JTC1/SC29/
WG11, MPEG02/M8423, Fairfax, May 2002, 6 pages.

HDMI Licensing, LL.C, FAQ for HDMI 1.4, Feb. 18, 2011, pp. 1-6.
Tourapis et al., “JVT of ISO/IEC MPEG & ITU-T VCEG,” Format
Extensions to the Spatially Interleaved Pictures SEI Message, Docu-
ment: JVT-ADO022, Geneva, CH, Jan. 29-Feb. 3, 2009.

Venuti, “Introducing HDMI 1.4 Specification Features”, High Defi-
nition Multimedia Interface, HDMI Licensing, LL.C, 2009, pp. 1-33.
Yan et al., “Region-Based Compression of Remote Sensing Stereo
Image Pairs”, Proceedings of SPIE, vol. 7455, 2009, pp. 1-13.

Tian et al., “On 2D + Depth SEI Message”, International Organisa-
tion for Standardisation, ISO/IEC JTC1/SC29/WG11, MPEG 2009/
M16320, Maui, US, Apr. 2009.

International Telecommunication Union, Reply LS from ISO/IEC
JTC 1/SC29/WG 11 on Video Coding Activities (COM16-LS-38),
Study Group 16, Geneva, Oct. 26-Nov. 6, 2009, 2 pages.

Sullivan et al., “Coding of Moving Pictures and Audio Information”,
International Organisation for Standardisation, ISO/IEC JTC1/
SC29/WG11N 10540, Maui, US, Apr. 2009.

Yamakage et al., “Generalized SEI Message for Spatially Interleaved
Pictures”, IVT of ISO/TEc MPEG & ITU-T VCEG, Document: JVT-
ADO12, Geneva, CH, Jan. 29-Feb. 3, 2009, pp. 1-6.

Tian et al., “On Spatially Interleaved Pictures SEI Message”, JVT of
ISO/IEC MPEG & ITU-T VCEG, Document: JVT-AD0O17, Geneva,
CH, Jan. 29-Feb. 3, 2009, pp. 1-11.

Bruls et al., “Proposal to Amendment MPEG-C Part 37, International
Organisation for Standardisation, ISO/IEc JTC1/SC29/WG11, Cod-
ing of Moving Pictures and Audio, Lausanne, Jul. 2007.

Pandit et al., “H.264/AVC Extension for MVC Using SEI Message”,
JVT of ISO/IEC MPEG & ITU-T VCEG, Document: JVT-X061,
24th Meeting: Geneva, Switzerland, Jun. 29-Jul. 6, 2007, pp. 1-14.
International Standard ISO/IEC 23002-3, “Information Technol-
0gy—MPEG Video Technologies—Part 3: Representation of Auxil-
iary Video and Supplemental Information”, First Edition Oct. 15,
2007, 34 pages.

De Neve et al.,, “Using Bitstream Structure Descriptions for the
Exploitation of Multi-Layered Temporal Scalability in H.264/AVC’s
Base Specification”, PCM 2005, Part 1, LNCS 3767, Springer-
Verlag, Berlin, Heidelberg, 2005, pp. 641-652.

Martinian et al., “View Synthesis for Multiview Video Compres-
sion”, Mitsubishi Electric Research Laboratories, TR2006-035, May
2006, Picture Coding Symposium 2006, 8 pages.

U.S. Pat. No. 7,539,250, May 26, 2009, Routhier et al., (withdrawn).

* cited by examiner

U.S. Patent Dec. 22, 2015 Sheet 1 of 28 US 9,219,923 B2

100

200

US 9,219,923 B2

Sheet 2 of 28

Dec. 22, 2015

U.S. Patent

H324nE 3uniond | 088
IONIHIH
&
;;;;;;;; 3 NOLVWILLSI NOLOW [~ 948
20 - N R
IR0 TEAd fivm NOLLYSNIWOO NOUOW [
A | 08
g9 1 wowoiome |
N [T Yy 26
A 0
096 - |
grg—{) W .
L NOISIOAC JdAl-gn| Uk
SETEEN B s
0ve— —0s8 | K
Sad NV 5d5 NOUVZINVOD ONY | __ 4
A WHOASNYEL ISHIAM ! J wosoe
wi JdALFHNIO | TS
M ¥
WYIHLS-LIE | H344nd ONIGOD [, NOLWZUNYRD | | N | 43448 . 13En101d
1NdN0 ™ | indLno AOHING | ONY AHOSSNEL | 1N+ fonaan0 3nved | | T Lndw
x T % L) !
o P \gpe oo 4588 1
Gee IR S T i*xi!iﬂmx iiiiiiiii T4 M gL LOE
HIEISNE | . o)
oee—1__ 88 TOHINOD HIAOONT <
4
c@m\ VAV /m@m

US 9,219,923 B2

Sheet 3 of 28

Dec. 22, 2015

U.S. Patent

L0

106100

}
§
H34408 JN1OId |
T 3oNTHL i
Gov VA
2 087 \\ - |
IO e »t NOLYSNIAINOD | 4
ONMO01830 - NOILOW m
A A §
| L |
o NOILOI3Hd m
VHINI e W W 167 |
i | |
N ~
gzp—\L)H m m
{
f
b L
i
|
NOUVZUNYNDONY | ONIQoD3a |, 4344N8 ||
WHOAONYHL 3SHIANH | AOHING | LNdNt AVILSLE 1NN
A i A
i } i
0SY p M “ mﬁw\\ ! oLy K
;;;;;; JOEINOD H300030 <
/ G0y

US 9,219,923 B2

Sheet 4 of 28

Dec. 22, 2015

U.S. Patent

ges —

988 —

HIAYIH
3017S ONVY H3AYEH
LNINOINOD ANA HOVE - 1NN TON FOVSSEN
HO4 SINSIOEAE0D g IRR N S » S Sdd '8dS
HA3 U4 3HL 138 3 ON 40 INOC ISVIT IV OL
'y v SINIWETI KYLNAS
17" JS3HL FLHM
Hip men]eziuenb =1t _—
{ip msiajuip oy i3S Olg AN \
[lp maijup yea A
138
L snuil squd w by oid e
_________________________ | snuuTsquTyipm o lI0 —png
== [[ip1 maialieyy sduesdn
—
mr yes L SnuiTSmMBIATpRpOSTIINY | g
135 90
[t mamboyy giiesdn . zog £
IYINHOZ UL N SUNIDI-ans T P0S
Y SV AONYLSNI SWIL 8YINDIUHYd s
Y 1V MIIA HOVYI JONVHHY g5 "Oid
Vs Old

US 9,219,923 B2

Sheet 5 of 28

Dec. 22, 2015

U.S. Patent

[{pt mainitey main sidwesdn |

135

B82S \\

6C% —

RUEHIE T
o mahesyo wonog don sl
M mempssyo doy doin swes
{hipT meniiesygo b dow swey

o menjiesyo ye dos swey
[P mamfiesyodor ao)
D mamiesyo s oo)

(o maniyp o
e metajbey yidep
138

T A
028 »
o=t 665
81§ 139
% 03000 MIIA
- o FTONIS HIHLO
| e menisyed wnu HO QHYONVLS
Dig 138 925~~~ DAY D3N
£ EINISTT 3HNLOM
N — HOY3 w,aoozm
135

US 9,219,923 B2

Sheet 6 of 28

Dec. 22, 2015

U.S. Patent

ININOINOD ANA HOVE TN T
8E9 ——7 HO4 SINFIOIEIE00 » tusweiouy e gaiingsy O = >
H30d 3HL 304V TR -
K L ol9— W
0r8
Hiprmeiniieznuenb g=i 019
9€9 —— [l memjuip oy 3SHYd
[memjunpusa EN
48HVd
S £ snu sow U ybey od "Bio
" e, L snuisquwipimod B0 g9
prmeialey Tepdesdn T mwmﬁ
mr vEY | SNUILTSMBIAT DO WY
' 354y 909
(i membayy odwesdn L z0g £
A5tvd HAAVaH 30115 GNv H3avaH

w21 == [meinBey mein meEm\m\@« -

—

~ 0€9

LINA YN 'SDYSSIN 8 'Sdd 'SdS

KYINAS ONIMO IO 3HI 35HYd

209
Vo "D N 00

30 ING LSV 1Y WONH SiNawaa [708

23000 MIIA
JTONIS H3HL0
HO GUVANYLS

DAY D3N
ONIST IHN LD
HOVE 300230

a0

g9 Ol

Vo "Old

US 9,219,923 B2

Sheet 7 of 28

Dec. 22, 2015

U.S. Patent

{{prma

AlBey meia ajduiesdn |

35dvd

/

gza "

G098 —

[juswiaioy

Tl menliesyo wionoy dan swel
{Hipr manliesyo~doy "doio sel
P mewmliesyo ybudoin sy
[Hp mainjiesyo ye) dos aluey
i menpiesyo™doy oo;
[Milpr matnliesyoye] 00
[Hlilpr maijap™dy
il mamiBey wdep

d5dvd
San 4

T —
o meinsped wny > |

ON T R
029 S
o=
89— 139 669
A
— — XVLNAS
| Mo menal), snujwsyed winy 33T HOIH THL
e 35Hvd 99— oSN 3LNLOG
0 JHL NOH-A MIIA
— Tor o HOV3 qumﬁmm
ISHYd

US 9,219,923 B2

Sheet 8 of 28

Dec. 22, 2015

U.S. Patent

8EL —

ININCINOO ANA HOVH

S SIABIA JO

H04 SINIICHA300
304 3HE L3S

A

gL —

Hip meiajiezyuenb

{lpr memjuip oy

[sainfwip 3en
138

¢

DI My Bidwesdr
CF v

B | JUSUWIBIOU
VA
!

oL~

" ON

JBquIny > |

4%:

0= —— 014

L snuwTsquTu wbey oid B0

135

| SNUILL SMBIATDPBPOD Ny

0l 0

b

%Emm%

JVINHOL 3T NE3ENLOI-ENS v
S JONVISN] WL UYIR0LHYd Y 1Y Hid3d
ONIGNOJSIHEO0 QY MIIA HOVE JONVHEY

o004
0s/ 1dViS

V. Old oo

HAYEH
3OS ONY H30Y3H
LN TON FOVSSIN
S "Sdd '8
40 3INO SVIT IV Ol
SLNIWITE XUUNAS
3G3HL FLHM

| smuTsquTypmTod B0 gy

138 —— 004

~— 0L

vol \

g4 Oid

Vi "Old

US 9,219,923 B2

Sheet 9 of 28

Dec. 22, 2015

U.S. Patent

o mainiBey meia eiduwesdn
B

fusaiouy

o meiliesyo wonog don suiey
o memijesyo doy dosa suiel
Hlpr meialiesyo Wb doin "awesy

ve] —1 [llEpT menfiesyo ys do swey
il

Qlip maialissyo dor 29
[ilo meimhiesyo el 00|
o mealup™diy
e memlbey yidep

8¢ \

135
SIA T
HDE MSIMSHEG WU >
OZ . ﬁv. . ..t \\
» A
e . ang
1 o= 66/
BL4~— 138
ry DI000 M3IIA
- JTONIS HIHLO
gp) ——f LRrmensped HO GHYANYLS
138 9L OAVr-DIdW
K ONISN IHNLOId
HOWE 3000NT
AV :ﬁm \%; -

US 9,219,923 B2

Sheet 10 of 28

Dec. 22, 2015

U.S. Patent

A
mu> - 23G00 MIATTONIS
TNINCIINGD ANA HOVE A TSMBIA [T HIHLO HO QHYONYLS
BEB —1 HO4 SINJOIHL300 P UBLUBIOYY sy 5 S DAY -5 3dIN
YA 3HL 38HYd 'y Y N ONISN FHNLO
7y) Zi8 HOY3 300030
Oy8 - \
Ihlpi menpeziuenb 0=l L0 174%)
958 ——1 [lipi memnjuip oy 135
[mainjunp pen 4
ASHYd
s K L shuimsquu by oid B
{ snuiysqui g aid Bl b gog
...... 4
_____________ o == [{iip{ mainleyy ejdwesdn " on Asuvd
—
m y\ﬁmm | SNUILE SMSIA PaPOs WinU _
I5dvd 908
(o menbeyy oidwesdn L op £
mwwmwm& ¥30V3H 30MNS ONV 930v3H
LINDYTYN "ZOVSSAN 136 'Sdd 'SdS | .
........... e 30 3NO 1SV IV WoHd sinawaa [708 | €8 "OId
el == [0 mainlBel Mo aidumsdn s XVINAS ONIMOTIOL JHL 35HYd .
oN == [lla ; e ejduiesdn | VS "D

_\w\\ﬂ, 088

ve Ol

US 9,219,923 B2

Sheet 11 of 28

Dec. 22, 2015

U.S. Patent

iprmaw]

By maln sidiuesdn
ASHYd

BUETIH

Emm_m sihesyo doy down Tswey
i am:%mwmo Wby dosr awey

A - ([P menlissyo el dos susey

o meainfiasyo dey 30
{fip meihiesyo yay 0]
{ipi meinlin™dy
Hlpr meiaBey yidsp
JSHYd

_Emmosgomogsaeu;m&ma

8c8 ‘\

ST (Cana)™
028 3 668
g=i
18— . STYNDIS Hidaa
m,.m (] % MIA QILOVHIXE IHL
) 128 1 ONISN SISTHINAS MIIA
TIor movls et d-am WHO4H3d m..mg‘m.z&om
98— ISHYd
x XYINAS TIATT HOIH 3HL
e {1 oNISN JHNLOId 3HL WOHA
78— 2SHvd 078 1 Hid30 DNIONOJSIHYCD
ONY MIIA HOYI TLvdvdas

F-N

US 9,219,923 B2
800

Sheet 12 of 28

Dec. 22, 2015

U.S. Patent

1000

U.S. Patent Dec. 22, 2015 Sheet 13 of 28 US 9,219,923 B2

1100

Fi

. 11

US 9,219,923 B2

Sheet 14 of 28

Dec. 22, 2015

U.S. Patent

swanbano) 048~
AR K NOUYWIST |,
gt ALIEYdSIa a8z -
IONIHIIH ~
> NOLYIILS3
NOLLYSNIJNOD
- coz1 NOLLOW
it S ALHYISI
N
| w0401 NOLYSNIAHOD
" no NGO
JONIHT4H |
0521 ~~—t 31T = \g,21
oNMoOIgaq | T
b,
> NODIGTH YHIM m\/
. A
ST L — () |
+ w
) NOISIOI0 |
0571 — WHOJSNYHL Oz} — N -
2 J00W
G771 — NOLYZUNYADS
B
¥ "
WyanisLg «— ONCOD i NOLIYZLNYND WHOASNYHL 14 ()
AdOHINT ~ T
A oz GLet oz’ 5024

00—

FHNLON
D

US 9,219,923 B2

Sheet 15 of 28

Dec. 22, 2015

U.S. Patent

ovEl

EMSA
H04 3015

GHEl —]

\‘snﬁlll./
SMAAHIHIO

HO4 3015

JHNLOd
JONHI4H

N

4N
JON3d343

o,
y

mmmw\\\

NOUYSNIdINOZ |

NOUYSNIdNOD
ALEYESIC

HOLO3A

/ammw

ALHVYHSIO

4

Hd VHLNI

smn
Qmmwv
NOLOIGE
A
SIHNLOK W L
10d1n0 < Jonpooaza €
mmmm‘.\\
8@\\\

N

d0Lo3A

NOULOW

KYLNAS

TOHINOD

ONIGCS3C

NOHOW
y A GG0]
Y " o
“ L
098 w\\
vt
& WHOASNYHL 1 NOLYZUNYOD!
:T
0zelL mx;\ om..ﬁ\\

AdUOHING

WYSH1518

mamw\

3NaS3Y

U.S. Patent Dec. 22, 2015 Sheet 16 of 28 US 9,219,923 B2

1400~
N

1405~

f’
ARRANGE EVERY N VIEWS, AMONG TOTAL

M VIEWS, AT A PARTICULAR TIME INSTANCE
AS A SUPER-PICTURE IN TILE FORMAT

1410

v

1415 ——f SET num_coded_visws_minus?
h 4

1420 e SET view_id[i} FOR ALL

{num_coded_views_minust + 1} VIEWS

\ 4
SET THE INTER-VIEW REFERENCE DEPENDENCY
1425 - |NFORMATION FOR ANCHOR PICTURES

¥
SET THE INTER-VIEW REFERENCE DEPENDENCY
1430~ INFORMATION FOR NON-ANGHOR PICTURES

1435 ~—i SET pseudo_view_present_flag

v

1440 ~
. NC
pseudo_view_present_flag

S~ STRUE?

VES

SET tiling_mode,
org_pic_width_in_mbs_minust and
org_pic_height_in_mbs_minusi

1445 ~o

h:

FOR EACH CODED VIEW, CALL
1450 ~~ N oo
pseuds_view_info{view_id)

G. 14 1499 -

US 9,219,923 B2

Sheet 17 of 28

Dec. 22, 2015

U.S. Patent

~ = | _—PiGL
[e gnsiBey man sidwesdn 135 01138
. lilpr we gnslupdy 138
DAN DNISN MIIA INFHHND — —
ENFNOWCD ADA HOY3 404 FHNOId LNFHHNO 300N Uipr e ans]isnuursyed wa
PEGL—"1 HO4 SINIIDIH4300 — 138
WAL 3HL 135 0251 al) 0
& A , e N wmw, N _
——— %smg ans Hip meia gns
[maw gnshiszauent : ww\
G-y [l man grsjupioy
¢t Oist

mmﬁngm_\«:ﬂﬁmwﬁ DY
138

i

}

pr maisqnshieyyeidivesan

p A
9eGt

S -y 1]

L SNUILLTSMOIA DBPR0D WiIny

BeGl—

\\\

V&Ll 'Bid

13S — P0G
R
Dl meia opnesd 001
HILINVHYY LNdNE HUM 1HWIS /7
N/)(0061

HGE Oid

VGl "Oid

i 'Ol

US 9,219,923 B2

Sheet 18 of 28

Dec. 22, 2015

U.S. Patent

Py~

G~

SHILH ONIHE EXId FHL
TV HO4 SINTIOHA300 FHL L3S

A

\‘-

Hpi mein gnslienuiusyeon sy Buyn ewd T wing 138

A

BESL—

Q “Man gns} mtmq W > v

%mv \

OpSi—"

0=113S
A

(e mein gnsjATisip diy 138
{0 mein %ww X sip end 139

A

[jusLsIou]

{[hlor main gnshiesyo wionog doin awey
i wum.xgws‘,@:mwmmmodoﬂao,asmSg
e mein gnshesyo by doss awey
{[llpr mew gnshesyo yer doun auey
0ldp main gnsiesyodoy o0
[Tl men"gnshesyo ey oo

_ 138
151 —

SETN

0 == spow Bugg

ww%_/_.\ ool

Lsnui sped Twinu > |

-,

ON
816t

U.S. Patent Dec. 22, 2015 Sheet 19 of 28 US 9,219,923 B2

1600
N

A
1615 i PARSE num_coded views minust
A 4
1690 i PARSE view_id[i] FOR ALL

{num_coded_viewsminus? + 1) VIEWS

k4

PARSE THE INTER-VIEW REFERENCE DEPENDENCY
1625 —~——j INFORMATION FOR ANCHOR PICTURES

PARSE THE INTER-VIEW REFERENGE DEPENDENCY
1630~ \NFORMATION FOR NON-ANCHOR PICTURES

¥
1835 —— PARSE pseudo_view_present_flag

Y

< pseudo_view _present flag T,
T ISTRUE? e

1640

YES

PARSE tiling_mode,
1645 ~ org_pic_width_in_mbs_minust and
org_pic_height_in_mbs_minust
k4
1650~ FOR EACH CODED VIEW, CALL
pseudo_view_infolview_id)

US 9,219,923 B2

Sheet 20 of 28

Dec. 22, 2015

U.S. Patent

voll v —— =138 VL1
ol waia gnsiBey mein 9idiuesan ISHYd
{lip mein"grshipdy 3SHYd XYINAS TAATT HOIH THL ONIST 38NN
AHL WO MIIA HOVE 1VdvddS
A
ANINOAWOO ANA HOY3 VoL
YELl—1 HOd4 SINIIOHAI00 DA ONIST MIIA INZHENO s e = reneed 1 corag 111 eon sl
H311 3HL 35Hvd HO4 3HNLOId INFHENO 3A00HC lpr e ans) snuiursyed iy
Py mwwr,&
Hp mein gnslieziiuenb 4 e
264 b—1 [mein gnsjuap” 1oy | INTNIHONT Fee o [ilormangns
Hiormaia gnsjuip LeA I5Hvd
454V p \
Orit
g=1 -
_ 139 8041
;//ml fg eI NSl magmw% == ON ’
f-lfj/ \.\\\\ﬂ
4 0gLt | ST SMOIA NS Wnu
35HYd —F0LL
gz /L —1 [P Mo ansiioyy siduesdn A
mww,& m DI MaIA opnasd 2001 g1 "5l
______________ HILAWVHY 1NdNE HLM LHYIS /7 ;
_______ e — Vil "84
o mein gnsifel mein sjduresdn x
e ~—
—oosr LE
5 A 9zLL

US 9,219,923 B2

Sheet 21 of 28

Dec. 22, 2015

U.S. Patent

OF b~ SHILUL ONIL 13X 3RL TV
d04 SINID4300 ZHL 35uvd

r-N

s L= lllp moin"gns]y snuisysod seyy Bugy exid Wnu 354V

&

o memgnsisued wnu >

_ ;
il —

Ovil—1 =138
A

g1 —— HIpraenansiATisp dy 35HYd
[lip mein~onsxysipiexid 38HVd

fuewsiou

TP men anshiesyo wopeq dom swey
Hhprmen gnshesyodoy doso sty
[lldp main gnshesye by doi swey
[Hpr mein~gnshesyo us domn suey
[[ll1p1 mein gnsfesyo doy ag)
(e main"gnsliesyo™ye| 00|
Eistable

mr:\ >

%nﬂam?___mww_,_,____

ON

Lenui sped winy > |

U.S. Patent Dec. 22, 2015 Sheet 22 of 28 US 9,219,923 B2

1800
N

1810 = ARRANGE EVERY N {VIEWS AND DEPTH MARS), AMONG TOTAL M MIEWS AND DEPTH
MAPS), AT A PARTICULAR TIME INSTANCE AS A SUPER-PICTURE IN TILE FORMAT

¥

1815 —~—d SET num_coded _views_minugt

1805 ——A,

4
1820 —— PARSE viewidfi] FOR ALL (hum_coded_views_minust + 1)
DEPTHS CORRESPONDING TO view_id[i]

¥
SET THE INTER-VIEW REFERENCE DEPENDENCY
1825 —— INFORMATION FOR ANCHOR DEPTH PICTURES

T
SET THE INTER-VIEW REFERENCE DEPENDENGY
1830 ' |NFORMATION FOR NON-ANCHOR DEPTH PICTURES

¥
1835] SET pseudo_view_present_flag

<« pseudo_view_present_flag ™,

YES

SET tiing mode,
1845 ~] org_pic_width_in_mbs_minusi AND
org_pic_height_in_mbs_minusi

A 4
FOR EACH CODED VIEW, CALL
pseudo_view_infolview_id)

1850 o

A 4

1899

US 9,219,923 B2

Sheet 23 of 28

Dec. 22, 2015

U.S. Patent

{iprmen gnsifey sei sidesdn 138

Hip me gnslapdig 135

peot—

yEG L~

LININOGWOOD ANA HOVS
HO4 SINIIDEH300
H3IH4 IHL 136

A

CE6

[pr man gnshezguenh

{lilp mein gnsup oy

Hilpr men ansjuip 1eA
133

X

Y16}

0=1138
(N=
6661~ mﬂ”

FANSW

b A
9cel

DA ONIST MIIA INIHHEND ——
HO4 H1d30 INTHHAD 3a00NT | | HRr e %m_mmga syed wny
0col - ﬁ
flpr meia gns
FHON] e
N
oiet \\
o=t |
138 9061

8cBbl—

[maiaanspepy sydwesdn

138

9 “mengns! mmm L magmm%

J\ /@m@,

LSNUILTSMBIA PapoD ™ Winu

-

w4

139 — 061
Pl meiA opnesd 2061
3L INYHY LN HLM LHYLS g6L ‘B4
N oos. | V6L DI
V6L "Dl 61 "Oid

US 9,219,923 B2

Sheet 24 of 28

Dec. 22, 2015

U.S. Patent

SHAOI DN X FHL

T HO4 SINAIDIHAZ00 IHL 138
K

P61~

61— [P mein"gns}| snuwu”sysod ey Buim exid” wnu 138
S3A|
e T — { Juswsiou
dpr s gnsisued wnu > :
o [Py meingns]sped winu > | o) o
Tp61 Hiprmem gnshiesyo wiopogq dois awely
HHlpr meia—gnshiesyodoy dois siuey
HHIDI MaIA gNSesyo b aouo swiel
i } bud
Opgl~—"71 0=1138 [{llpr men gnshiesyo ye| doio susey
/) [l mengnsfiesgo™doy 0o
[P e grshesyo™ye| 00|
gegt—1 liprweinansiATsipdi 139 138
[lipi mein gnsx isip jend 138 \\ - L,
__ AP eI gnS] —_
e @é-&é -
16—

U.S. Patent

2000
N

Dec. 22, 2015

Sheet 25 of 28

2005

2015 ~~——

PARSE num coded views minust

¥

2020 —

PARSE view_id[i| FOR ALL
{rumn_coded_views_minust + 1) BEPTHS
COBRESPONDING TO view_id{i]

A4

2025 ——

PARSE THE INTER-VIEW REFERENCE DEPENDENCY
INFORMATION FOR ANCHOR DEPTH PICTURES

h:

2030 ~——

PARSE THE INTER-VIEW REFERENCE DEPENDENCY
INFORMATION FOR NON-ANCHOR DEPTH PICTURES

¥

2035

PARSE psaudo_view_present_flag

2040 *\// ~

\
—Pseudo_view_present IS

NO

2045 ~——

PARSE tiing mode,
org_pic_width_in_mbs_minus? AND

org_pic_height_in_mbs_minus1

A

2050 ~

FOR EACH CODED VIEW, CALL
pseudo_view_infolview_id)

G. 20

2099

US 9,219,923 B2

US 9,219,923 B2

Sheet 26 of 28

Dec. 22, 2015

U.S. Patent

_ anNd %
1ZAY 6614 0=1138 b—1112
liprsa gnsibey men sidwesdn 38UV ;
e meignslip™diy 384 XYLNAS AGTHIIH 3HL BNISA J4M0Hd
FHLNOHS MIIA HOvd 31vdvdas
B
. 22—]
ININOdNOS ADA HOVA
PoLE—1 HO4SINIOEA300 | SAW DNISTH M3IA INIHEND R R
Y314 3HL 3SHV HO4 HLA30 INFEHAD 30030 | | LIPCwenR mgwww@% syed
N
0ziz—" 7 ¥
[Hpr main”qnshiezguend ~ ok [liprmen gns
2e1g—— lilp men ansluip oy | INTNIHON o IR
{Hp mein"gnsjusp oA y \
JSHvd L
OLig
~ 0ELe LSNLILLSMEIATGNS T WnY
A5k —P0Le
Q712 —1 lip men gnshieyy siduwesdn A
mmwmm,& P mein"opnasd oz (HEC Ol
........ HALINYEYS LOdN HLIM 18IS S .
.............. Hs j %@ } sQ q‘m_w @%&
L == {lpi et qnalBey mein sidutesdn T
L ON K .

e o
NP VLIZ ‘Oi4 ooie 4€ "OId

US 9,219,923 B2

Sheet 27 of 28

Dec. 22, 2015

U.S. Patent

O Lé~__ 1 SHIN ONMIL X 3HLTW
H04 SINFIOHHI0C FHL 304

A
ypig—"1 lllp s gns]isnup syeco ey Buily exid wnu 3SHvd
34]
< gwmsw.\,%m%ma%c — f weteiouy
& iy i
N o1 may {
\\\\ O Mo gnsias o WoRoG doso ™ aluel
cvio Hhipr man gnshissyo doy doio awey
[0lp mamgnshesge Wb don swel
Opie—"1 o=0138 {[ip man"gnshiesyo yel doio suwies
A Ml amain"gnsfiesyodoy oo
[l meir gnsiiesyo ye| 20|
golz—1 prmeinansiATisiodiy 3HYd ISHYd
e sen ansix isip jexid 384V .

o o= mnoﬁzmcw_mmmm v
" AN

-4
Y

oN psrnud sed wnu v_m

9Lic

U.S. Patent Dec. 22, 2015 Sheet 28 of 28 US 9,219,923 B2

‘ : % 2250
VAVAYA
f VIEW 1 C@
% 3 = ~QFFSET OF VIEW 3
iN THE PSEUDO VIEW

OCOGSL

Slont A INTER-
} i POLATED
; PIXELS
H
H
EXAMPLE 1:
TILING AT PIXEL LEVEL EXAMPLE 2:
5910 TILING AT PIXEL LEVEL
T 2220
2300
USER
& INPUT 2370
2320 2330 o 2360
2380
RECEIVE 2310 o C{goga PICTURE _J
DATA o | SELECTION
SIGNAL s
» DECODER SELECTOR >
» DECODED
TILING PICTURES

(. 23

US 9,219,923 B2

1
TILING IN VIDEO ENCODING AND
DECODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of co-pending U.S. appli-
cation Ser. No. 14/300,597, filed Jun. 10, 2014, which is a
continuation of U.S. application Ser. No. 12/450,829, filed
Oct. 13, 2009, now U.S. Pat. No. 8,780,998 issued Jul. 15,
2014, which is a 371 of International Application No. PCT/
US/2008/004747 filed Apr. 11, 2008, which claims benefit of
Provisional Application No. 60/925,400 filed Apr. 20, 2007
and U.S. Provisional Application No. 60/923,014 filed Apr.
12, 2007, herein incorporated by reference.

TECHNICAL FIELD

The present principles relate generally to video encoding
and/or decoding.

BACKGROUND

Video display manufacturers may use a framework of
arranging or tiling different views on a single frame. The
views may then be extracted from their respective locations
and rendered.

SUMMARY

According to a general aspect, a video picture is accessed
that includes multiple pictures combined into a single picture.
Information is accessed indicating how the multiple pictures
in the accessed video picture are combined. The video picture
is decoded to provide a decoded representation of the com-
bined multiple pictures. The accessed information and the
decoded video picture are provided as output.

According to another general aspect, information is gener-
ated indicating how multiple pictures included in a video
picture are combined into a single picture. The video picture
is encoded to provide an encoded representation of the com-
bined multiple pictures. The generated information and
encoded video picture are provided as output.

According to another general aspect, a signal or signal
structure includes information indicating how multiple pic-
tures included in a single video picture are combined into the
single video picture. The signal or signal structure also
includes an encoded representation of the combined multiple
pictures.

According to another general aspect, a video picture is
accessed that includes multiple pictures combined into a
single picture. Information is accessed that indicates how the
multiple pictures in the accessed video picture are combined.

The video picture is decoded to provide a decoded repre-
sentation of at least one of the multiple pictures. The accessed
information and the decoded representation are provided as
output.

According to another general aspect, a video picture is
accessed that includes multiple pictures combined into a
single picture. Information is accessed that indicates how the
multiple pictures in the accessed video picture are combined.
The video picture is decoded to provide a decoded represen-
tation of the combined multiple pictures. User input is
received that selects at least one of the multiple pictures for
display. A decoded output of the at least one selected picture

10

15

20

25

30

35

40

45

50

55

60

65

2

is provided, the decoded output being provided based on the
accessed information, the decoded representation, and the
user input.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Even
if described in one particular manner, it should be clear that
implementations may be configured or embodied in various
manners. For example, an implementation may be performed
as a method, or embodied as an apparatus configured to
perform a set of operations, or embodied as an apparatus
storing instructions for performing a set of operations, or
embodied in a signal. Other aspects and features will become
apparent from the following detailed description considered
in conjunction with the accompanying drawings and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a diagram showing an example of four views tiled
on a single frame;

FIG. 2 is a diagram showing an example of four views
flipped and tiled on a single frame;

FIG. 3 shows a block diagram for a video encoder to which
the present principles may be applied, in accordance with an
embodiment of the present principles;

FIG. 4 shows a block diagram for a video decoder to which
the present principles may be applied, in accordance with an
embodiment of the present principles;

FIGS. 5A and 5B are a flow diagram for a method for
encoding pictures for a plurality of views using the MPEG-4
AVC Standard, in accordance with an embodiment of the
present principles;

FIGS. 6A and 6B are a flow diagram for a method for
decoding pictures for a plurality of views using the MPEG-4
AVC Standard, in accordance with an embodiment of the
present principles;

FIGS. 7A and 7B are a flow diagram for a method for
encoding pictures for a plurality of views and depths using the
MPEG-4 AVC Standard, in accordance with an embodiment
of the present principles;

FIGS. 8A and 8B are a flow diagram for a method for
decoding pictures for a plurality of views and depths using the
MPEG-4 AVC Standard, in accordance with an embodiment
of the present principles;

FIG. 9 is a diagram showing an example of a depth signal,
in accordance with an embodiment of the present principles;

FIG. 10 is a diagram showing an example of a depth signal
added as a tile, in accordance with an embodiment of the
present principles;

FIG. 11 is a diagram showing an example of 5 views tiled
on a single frame, in accordance with an embodiment of the
present principles.

FIG. 12 is a block diagram for an exemplary Multi-view
Video Coding (MVC) encoder to which the present principles
may be applied, in accordance with an embodiment of the
present principles;

FIG. 13 is a block diagram for an exemplary Multi-view
Video Coding (MVC) decoder to which the present principles
may be applied, in accordance with an embodiment of the
present principles;

FIG. 14 is a flow diagram for a method for processing
pictures for a plurality of views in preparation for encoding
the pictures using the multi-view video coding (MVC) exten-
sion of the MPEG-4 AVC Standard, in accordance with an
embodiment of the present principles;

FIGS. 15A and 15B are a flow diagram for a method for
encoding pictures for a plurality of views using the multi-

US 9,219,923 B2

3
view video coding (MVC) extension of the MPEG-4 AVC
Standard, in accordance with an embodiment of the present
principles;

FIG. 16 is a flow diagram for a method for processing
pictures for a plurality of views in preparation for decoding
the pictures using the multi-view video coding (MVC) exten-
sion of the MPEG-4 AVC Standard, in accordance with an
embodiment of the present principles;

FIGS. 17A and 17B are a flow diagram for a method for
decoding pictures for a plurality of views using the multi-
view video coding (MVC) extension of the MPEG-4 AVC
Standard, in accordance with an embodiment of the present
principles;

FIG. 18 is a flow diagram for a method for processing
pictures for a plurality of views and depths in preparation for
encoding the pictures using the multi-view video coding
(MVC) extension of the MPEG-4 AVC Standard, in accor-
dance with an embodiment of the present principles;

FIGS. 19A and 19B are a flow diagram for a method for
encoding pictures for a plurality of views and depths using the
multi-view video coding (MVC) extension of the MPEG-4
AVC Standard, in accordance with an embodiment of the
present principles;

FIG. 20 is a flow diagram for a method for processing
pictures for a plurality of views and depths in preparation for
decoding the pictures using the multi-view video coding
(MVC) extension of the MPEG-4 AVC Standard, in accor-
dance with an embodiment of the present principles;

FIGS. 21A and 21B are a flow diagram for a method for
decoding pictures for a plurality of views and depths using the
multi-view video coding (MVC) extension of the MPEG-4
AVC Standard, in accordance with an embodiment of the
present principles;

FIG. 22 is a diagram showing tiling examples at the pixel
level, in accordance with an embodiment of the present prin-
ciples; and

FIG. 23 shows a block diagram for a video processing
device to which the present principles may be applied, in
accordance with an embodiment of the present principles.

DETAILED DESCRIPTION

Various implementations are directed to methods and
apparatus for view tiling in video encoding and decoding. It
will thus be appreciated that those skilled in the art will be
able to devise various arrangements that, although not explic-
itly described or shown herein, embody the present principles
and are included within its spirit and scope.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in under-
standing the present principles and the concepts contributed
by the inventor(s) to furthering the art, and are to be construed
as being without limitation to such specifically recited
examples and conditions.

Moreover, all statements herein reciting principles,
aspects, and embodiments of the present principles, as well as
specific examples thereof, are intended to encompass both
structural and functional equivalents thereof.

Additionally, it is intended that such equivalents include
both currently known equivalents as well as equivalents
developed in the future, i.e., any elements developed that
perform the same function, regardless of structure.

Thus, for example, it will be appreciated by those skilled in
the art that the block diagrams presented herein represent
conceptual views of illustrative circuitry embodying the
present principles. Similarly, it will be appreciated that any
flow charts, flow diagrams, state transition diagrams,

10

15

20

25

30

35

40

45

50

55

60

65

4

pseudocode, and the like represent various processes which
may be substantially represented in computer readable media
and so executed by a computer or processor, whether or not
such computer or processor is explicitly shown.

The functions of the various elements shown in the figures
may be provided through the use of dedicated hardware as
well as hardware capable of executing software in association
with appropriate software. When provided by a processor, the
functions may be provided by a single dedicated processor, by
a single shared processor, or by a plurality of individual
processors, some of which may be shared. Moreover, explicit
use of the term “processor” or “controller” should not be
construed to refer exclusively to hardware capable of execut-
ing software, and may implicitly include, without limitation,
digital signal processor (“DSP”) hardware, read-only
memory (“ROM”) for storing software, random access
memory (“RAM”), and non-volatile storage.

Other hardware, conventional and/or custom, may also be
included. Similarly, any switches shown in the figures are
conceptual only. Their function may be carried out through
the operation of program logic, through dedicated logic,
through the interaction of program control and dedicated
logic, or even manually, the particular technique being select-
able by the implementer as more specifically understood from
the context.

In the claims hereof, any element expressed as a means for
performing a specified function is intended to encompass any
way of performing that function including, for example, a) a
combination of circuit elements that performs that function or
b) software in any form, including, therefore, firmware,
microcode or the like, combined with appropriate circuitry
for executing that software to perform the function. The
present principles as defined by such claims reside in the fact
that the functionalities provided by the various recited means
are combined and brought together in the manner which the
claims call for. It is thus regarded that any means that can
provide those functionalities are equivalent to those shown
herein.

Reference in the specification to “one embodiment™ (or
“one implementation™) or “an embodiment” (or “an imple-
mentation”) of the present principles means that a particular
feature, structure, characteristic, and so forth described in
connection with the embodiment is included in at least one
embodiment of the present principles. Thus, the appearances
of the phrase “in one embodiment” or “in an embodiment”
appearing in various places throughout the specification are
not necessarily all referring to the same embodiment.

Itis to be appreciated that the use of the terms “and/or” and
“at least one of”, for example, in the cases of “A and/or B” and
“at least one of A and B”, is intended to encompass the
selection of the first listed option (A) only, or the selection of
the second listed option (B) only, or the selection of both
options (A and B). As a further example, in the cases of “A, B,
and/or C” and “at least one of A, B, and C”, such phrasing is
intended to encompass the selection of the first listed option
(A) only, or the selection of the second listed option (B) only,
or the selection of the third listed option (C) only, or the
selection of the first and the second listed options (A and B)
only, or the selection of the first and third listed options (A and
C) only, or the selection of the second and third listed options
(B and C) only, or the selection of all three options (A and B
and C). This may be extended, as readily apparent by one of
ordinary skill in this and related arts, for as many items listed.

Moreover, it is to be appreciated that while one or more
embodiments of the present principles are described herein
with respect to the MPEG-4 AVC standard, the present prin-
ciples are not limited to solely this standard and, thus, may be

US 9,219,923 B2

5

utilized with respect to other standards, recommendations,
and extensions thereof, particularly video coding standards,
recommendations, and extensions thereof, including exten-
sions of the MPEG-4 AVC standard, while maintaining the
spirit of the present principles.

Further, it is to be appreciated that while one or more other
embodiments of the present principles are described herein
with respect to the multi-view video coding extension of the
MPEG-4 AVC standard, the present principles are not limited
to solely this extension and/or this standard and, thus, may be
utilized with respect to other video coding standards, recom-
mendations, and extensions thereof relating to multi-view
video coding, while maintaining the spirit of the present
principles. Multi-view video coding (MVC) is the compres-
sion framework for the encoding of multi-view sequences. A
Multi-view Video Coding (MVC) sequence is a set of two or
more video sequences that capture the same scene from a
different view point.

Also, it is to be appreciated that while one or more other
embodiments of the present principles are described herein
that use depth information with respect to video content, the
present principles are not limited to such embodiments and,
thus, other embodiments may be implemented that do not use
depth information, while maintaining the spirit of the present
principles.

Additionally, as used herein, “high level syntax” refers to
syntax present in the bitstream that resides hierarchically
above the macroblock layer. For example, high level syntax,
as used herein, may refer to, but is not limited to, syntax at the
slice header level, Supplemental Enhancement Information
(SEI) level, Picture Parameter Set (PPS) level, Sequence
Parameter Set (SPS) level, View Parameter Set (VPS), and
Network Abstraction Layer (NAL) unit header level.

In the current implementation of multi-video coding
(MVC) based on the International Organization for Standard-
ization/International Electrotechnical Commission (ISOIEC)
Moving Picture Experts Group-4 (MPEG-4) Part 10
Advanced Video Coding (AVC) standard/International Tele-
communication Union, Telecommunication Sector (ITU-T)
H.264 Recommendation (hereinafter the “MPEG-4 AVC
Standard”), the reference software achieves multi-view pre-
diction by encoding each view with a single encoder and
taking into consideration the cross-view references. Each
view is coded as a separate bitstream by the encoder in its
original resolution and later all the bitstreams are combined to
form a single bitstream which is then decoded. Each view
produces a separate YUV decoded output.

Another approach for multi-view prediction involves
grouping a set of views into pseudo views. In one example of
this approach, we can tile the pictures from every N views out
of the total M views (sampled at the same time) on a larger
frame or a super frame with possible downsampling or other
operations. Turning to FIG. 1, an example of four views tiled
on a single frame is indicated generally by the reference
numeral 100. All four views are in their normal orientation.

Turning to FIG. 2, an example of four views flipped and
tiled on a single frame is indicated generally by the reference
numeral 200. The top-left view is in its normal orientation.
The top-right view is flipped horizontally. The bottom-left
view is flipped vertically. The bottom-right view is flipped
both horizontally and vertically. Thus, if there are four views,
then a picture from each view is arranged in a super-frame like
a tile. This results in a single un-coded input sequence with a
large resolution.

Alternatively, we can downsample the image to produce a
smaller resolution. Thus, we create multiple sequences which
each include different views that are tiled together. Each such

25

40

45

55

6

sequence then forms a pseudo view, where each pseudo view
includes N different tiled views. FIG. 1 shows one pseudo-
view, and FIG. 2 shows another pseudo-view. These pseudo
views can then be encoded using existing video coding stan-
dards such as the ISOIEC MPEG-2 Standard and the
MPEG-4 AVC Standard.

Yet another approach for multi-view prediction simply
involves encoding the different views independently using a
new standard and, after decoding, tiling the views as required
by the player.

Further, in another approach, the views can also be tiled in
a pixel wise way. For example, in a super view that is com-
posed of four views, pixel (X, y) may be from view 0, while
pixel (x+1, y) may be from view 1, pixel (X, y+1) may be from
view 2, and pixel (x+1, y+1) may be from view 3.

Many displays manufacturers use such a frame work of
arranging or tiling different views on a single frame and then
extracting the views from their respective locations and ren-
dering them. In such cases, there is no standard way to deter-
mine if the bitstream has such a property. Thus, if a system
uses the method of tiling pictures of different views in a large
frame, then the method of extracting the different views is
proprietary.

However, there is no standard way to determine if the
bitstream has such a property. We propose high level syntax in
order to facilitate the renderer or player to extract such infor-
mation in order to assist in display or other post-processing. It
is also possible the sub-pictures have different resolutions and
some upsampling may be needed to eventually render the
view. The user may want to have the method of upsample
indicated in the high level syntax as well. Additionally,
parameters to change the depth focus can also be transmitted.

In an embodiment, we propose a new Supplemental
Enhancement Information (SEI) message for signaling multi-
view information in a MPEG-4 AVC Standard compatible
bitstream where each picture includes sub-pictures which
belong to a different view. The embodiment is intended, for
example, for the easy and convenient display of multi-view
video streams on three-dimensional (3D) monitors which
may use such a framework. The concept can be extended to
other video coding standards and recommendations signaling
such information using high level syntax.

Moreover, in an embodiment, we propose a signaling
method of how to arrange views before they are sent to the
multi-view video encoder and/or decoder. Advantageously,
the embodiment may lead to a simplified implementation of
the multi-view coding, and may benefit the coding efficiency.
Certain views can be put together and form a pseudo view or
super view and then the tiled super view is treated as a normal
view by a common multi-view video encoder and/or decoder,
for example, as per the current MPEG-4 AVC Standard based
implementation of multi-view video coding. A new flag is
proposed in the Sequence Parameter Set (SPS) extension of
multi-view video coding to signal the use of the technique of
pseudo views. The embodiment is intended for the easy and
convenient display of multi-view video streams on 3D moni-
tors which may use such a framework.

Encoding/Decoding Using a Single-View Video Encoding/
Decoding Standard/Recommendation

In the current implementation of multi-video coding
(MVC) based on the International Organization for Standard-
ization/International Electrotechnical Commission (ISO/
IEC) Moving Picture Experts Group-4 (MPEG-4) Part 10
Advanced Video Coding (AVC) standard/International Tele-
communication Union, Telecommunication Sector (ITU-T)
H.264 Recommendation (hereinafter the “MPEG-4 AVC
Standard”), the reference software achieves multi-view pre-

US 9,219,923 B2

7

diction by encoding each view with a single encoder and
taking into consideration the cross-view references. Each
view is coded as a separate bitstream by the encoder in its
original resolution and later all the bitstreams are combined to
form a single bitstream which is then decoded. Each view
produces a separate YUV decoded output.

Another approach for multi-view prediction involves tiling
the pictures from each view (sampled at the same time) on a
larger frame or a super frame with a possible downsampling
operation. Turning to FIG. 1, an example of four views tiled
on a single frame is indicated generally by the reference
numeral 100. Turning to FIG. 2, an example of four views
flipped and tiled on a single frame is indicated generally by
the reference numeral 200. Thus, if there are four views, then
a picture from each view is arranged in a super-frame like a
tile. This results in a single un-coded input sequence with a
large resolution. This signal can then be encoded using exist-
ing video coding standards such as the ISOIEC MPEG-2
Standard and the MPEG-4 AVC Standard.

Yet another approach for multi-view prediction simply
involves encoding the different views independently using a
new standard and, after decoding, tiling the views as required
by the player.

Many displays manufacturers use such a frame work of
arranging or tiling different views on a single frame and then
extracting the views from their respective locations and ren-
dering them. In such cases, there is no standard way to deter-
mine if the bitstream has such a property. Thus, if a system
uses the method of tiling pictures of different views in a large
frame, then the method of extracting the different views is
proprietary.

Turning to FIG. 3, a video encoder capable of performing
video encoding in accordance with the MPEG-4 AVC stan-
dard is indicated generally by the reference numeral 300.

The video encoder 300 includes a frame ordering buffer
310 having an output in signal communication with a non-
inverting input of a combiner 385. An output of the combiner
385 is connected in signal communication with a first input of
atransformer and quantizer 325. An output of the transformer
and quantizer 325 is connected in signal communication with
a first input of an entropy coder 345 and a first input of an
inverse transformer and inverse quantizer 350. An output of
the entropy coder 345 is connected in signal communication
with a first non-inverting input of a combiner 390. An output
of the combiner 390 is connected in signal communication
with a first input of an output bufter 335.

A first output of an encoder controller 305 is connected in
signal communication with a second input of the frame order-
ing buffer 310, a second input of the inverse transformer and
inverse quantizer 350, an input of a picture-type decision
module 315, an input of a macroblock-type (MB-type) deci-
sion module 320, a second input of an intra prediction module
360, a second input of a deblocking filter 365, a first input of
a motion compensator 370, a first input of a motion estimator
375, and a second input of a reference picture bufter 380.

A second output of the encoder controller 305 is connected
in signal communication with a first input of a Supplemental
Enhancement Information (SEI) inserter 330, a second input
of the transformer and quantizer 325, a second input of the
entropy coder 345, a second input of the output buffer 335,
and an input of the Sequence Parameter Set (SPS) and Picture
Parameter Set (PPS) inserter 340.

A first output of the picture-type decision module 315 is
connected in signal communication with a third input of a
frame ordering buffer 310. A second output of the picture-

20

25

40

45

8

type decision module 315 is connected in signal communica-
tion with a second input of a macroblock-type decision mod-
ule 320.

An output of the Sequence Parameter Set (SPS) and Picture
Parameter Set (PPS) inserter 340 is connected in signal com-
munication with a third non-inverting input of the combiner
390. An output of the SEI Inserter 330 is connected in signal
communication with a second non-inverting input of the com-
biner 390.

An output of the inverse quantizer and inverse transformer
350 is connected in signal communication with a first non-
inverting input of a combiner 319. An output of the combiner
319 is connected in signal communication with a first input of
the intra prediction module 360 and a first input of the
deblocking filter 365. An output of the deblocking filter 365 is
connected in signal communication with a first input of a
reference picture buffer 380. An output of the reference pic-
ture buffer 380 is connected in signal communication with a
second input of the motion estimator 375 and with a first input
of' a motion compensator 370. A first output of the motion
estimator 375 is connected in signal communication with a
second input of the motion compensator 370. A second output
of'the motion estimator 375 is connected in signal communi-
cation with a third input of the entropy coder 345.

An output of the motion compensator 370 is connected in
signal communication with a first input of a switch 397. An
output of the intra prediction module 360 is connected in
signal communication with a second input of the switch 397.
An output of the macroblock-type decision module 320 is
connected in signal communication with a third input of the
switch 397 in order to provide a control input to the switch
397. The third input of the switch 397 determines whether or
not the “data” input of the switch (as compared to the control
input, i.e., the third input) is to be provided by the motion
compensator 370 or the intra prediction module 360. The
output of the switch 397 is connected in signal communica-
tion with a second non-inverting input of the combiner 319
and with an inverting input of the combiner 385.

Inputs of the frame ordering bufter 310 and the encoder
controller 105 are available as input of the encoder 300, for
receiving an input picture 301. Moreover, an input of the
Supplemental Enhancement Information (SEI) inserter 330 is
available as an input of the encoder 300, for receiving meta-
data. An output of the output buffer 335 is available as an
output of the encoder 300, for outputting a bitstream.

Turning to FIG. 4, a video decoder capable of performing
video decoding in accordance with the MPEG-4 AVC stan-
dard is indicated generally by the reference numeral 400.

The video decoder 400 includes an input buffer 410 having
an output connected in signal communication with a first
input of the entropy decoder 445. A first output of the entropy
decoder 445 is connected in signal communication with a first
input of an inverse transformer and inverse quantizer 450. An
output of the inverse transformer and inverse quantizer 450 is
connected in signal communication with a second non-invert-
ing input of a combiner 425. An output of the combiner 425 is
connected in signal communication with a second input of a
deblocking filter 465 and a first input of an intra prediction
module 460. A second output of the deblocking filter 465 is
connected in signal communication with a first input of a
reference picture buffer 480. An output of the reference pic-
ture buffer 480 is connected in signal communication with a
second input of a motion compensator 470.

A second output of the entropy decoder 445 is connected in
signal communication with a third input of the motion com-
pensator 470 and a first input of the deblocking filter 465. A
third output of the entropy decoder 445 is connected in signal

US 9,219,923 B2

9

communication with an input of a decoder controller 405. A
first output of the decoder controller 405 is connected in
signal communication with a second input of the entropy
decoder 445. A second output of the decoder controller 405 is
connected in signal communication with a second input of the
inverse transformer and inverse quantizer 450. A third output
of the decoder controller 405 is connected in signal commu-
nication with a third input of the deblocking filter 465. A
fourth output of the decoder controller 405 is connected in
signal communication with a second input of the intra pre-
diction module 460, with a first input of the motion compen-
sator 470, and with a second input of the reference picture
butfer 480.

An output of the motion compensator 470 is connected in
signal communication with a first input of a switch 497. An
output of the intra prediction module 460 is connected in
signal communication with a second input of the switch 497.
An output of the switch 497 is connected in signal commu-
nication with a first non-inverting input of the combiner 425.

An input of the input buffer 410 is available as an input of
the decoder 400, for receiving an input bitstream. A first
output of the deblocking filter 465 is available as an output of
the decoder 400, for outputting an output picture.

Turning to FIG. 5, including FIGS. 5A and 5B, an exem-
plary method for encoding pictures for a plurality of views
using the MPEG-4 AVC Standard is indicated generally by
the reference numeral 500.

The method 500 includes a start block 502 that passes
control to a function block 504. The function block 504
arranges each view at a particular time instance as a sub-
picture in tile format, and passes control to a function block
506. The function block 506 sets a syntax element num_cod-
ed_views_minus1, and passes control to a function block
508. The function block 508 sets syntax elements org
pic_width_in_mbs_minus1 and org_pic_height_in_mbs_mi-
nusl, and passes control to a function block 510. The function
block 510 sets a variable i equal to zero, and passes control to
a decision block 512. The decision block 512 determines
whether or not the variable i is less than the number of views.
If so, then control is passed to a function block 514. Other-
wise, control is passed to a function block 524.

The function block 514 sets a syntax element view_id[i],
and passes control to a function block 516. The function block
516 sets a syntax element num_parts[view_id[i]], and passes
control to a function block 518. The function block 518 sets a
variable j equal to zero, and passes control to a decision block
520. The decision block 520 determines whether or not the
current value of the variable j is less than the current value of
the syntax element num_parts[view_id[i]]. If so, then control
is passed to a function block 522. Otherwise, control is passed
to a function block 528.

The function block 522 sets the following syntax elements,
increments the variable j, and then returns control to the
decision block 520: depth_flag[view_id[i]][j]; flip_dir[vie-
w_id[i]][j]; loc_left_offset[view_id[i]][j]; loc_top_offset
[view_id[1]][j]; frame_crop_left_offset[view_id[i]][j];
frame_crop_right_offset[view_id[i]][j]; frame_crop_to-
p_offset[view_id[i]][j]; and frame_crop_bottom_offset|vie-
w_id[iTI[i].

The function block 528 sets a syntax element upsam-
ple_view_{flag[view_id[i]], and passes control to a decision
block 530. The decision block 530 determines whether or not
the current value of the syntax element upsample_view_flag
[view_id[1]] is equal to one. If so, then control is passed to a
function block 532. Otherwise, control is passed to a decision
block 534.

10

15

20

25

30

35

40

45

50

55

60

65

10

The function block 532 sets a syntax element upsam-
ple_filter[view_id[i]], and passes control to the decision
block 534.

The decision block 534 determines whether or not the
current value of the syntax element upsample_filter| view_id
[1]] is equal to three. If so, then control is passed to a function
block 536. Otherwise, control is passed to a function block
540.

The function block 536 sets the following syntax elements
and passes control to a function block 538: vert_dim|view_id
[1]]; hor_dim[view_id[i]]; and quantizer|view_id[i]].

The function block 538 sets the filter coefficients for each
YUV component, and passes control to the function block
540.

The function block 540 increments the variable i, and
returns control to the decision block 512.

The function block 524 writes these syntax elements to at
least one of the Sequence Parameter Set (SPS), Picture
Parameter Set (PPS), Supplemental Enhancement Informa-
tion (SEI) message, Network Abstraction Layer (NAL) unit
header, and slice header, and passes control to a function
block 526. The function block 526 encodes each picture using
the MPEG-4 AVC Standard or other single view codec, and
passes control to an end block 599.

Turning to FIG. 6, including FIGS. 6A and 6B, an exem-
plary method for decoding pictures for a plurality of views
using the MPEG-4 AVC Standard is indicated generally by
the reference numeral 600.

The method 600 includes a start block 602 that passes
control to a function block 604. The function block 604 parses
the following syntax elements from at least one of the
Sequence Parameter Set (SPS), Picture Parameter Set (PPS),
Supplemental Enhancement Information (SEI) message,
Network Abstraction Layer (NAL) unit header, and slice
header, and passes control to a function block 606. The func-
tion block 606 parses a syntax element num_coded_
views_minus1, and passes control to a function block 608.
The function block 608 parses syntax elements org_pic_
width_in_mbs_minusl and org_pic_height_in_mbs_mi-
nus1, and passes control to a function block 610. The function
block 610 sets a variable i equal to zero, and passes control to
a decision block 612. The decision block 612 determines
whether or not the variable iis less than the number of views.
If so, then control is passed to a function block 614. Other-
wise, control is passed to a function block 624.

The function block 614 parses a syntax element view_id[1i],
and passes control to a function block 616. The function block
616 parses a syntax element num_parts_minus1 [view_id[i]],
and passes control to a function block 618. The function block
618 sets a variable j equal to zero, and passes control to a
decision block 620. The decision block 620 determines
whether or not the current value of the variable j is less than
the current value of the syntax element num_parts[view_id
[1]]. If so, then control is passed to a function block 622.
Otherwise, control is passed to a function block 628.

The function block 622 parses the following syntax ele-
ments, increments the variable j, and then returns control to
the decision block 620: depth_flag[view_id[i]][j]; flip_dir
[view_id[i]][j]; loc_left_offset[view_id[i]][j]; loc_top_offset
[view_id[i]][j]; frame_crop_left_offset[view_id[i]][j];
frame_crop_right_offset[view_id[i]][j]; frame_crop_to-
p_offset[view_id[i]][j]; and frame_crop_bottom_offset|vie-
w_id[iT][il-

The function block 628 parses a syntax element upsam-
ple_view_{flag[view_id[i]], and passes control to a decision
block 630. The decision block 630 determines whether or not
the current value of the syntax element upsample_view_flag

US 9,219,923 B2

11

[view_id[1]] is equal to one. If so, then control is passed to a
function block 632. Otherwise, control is passed to a decision
block 634.

The function block 632 parses a syntax element upsam-
ple_filter[view_id[i]], and passes control to the decision
block 634.

The decision block 634 determines whether or not the
current value of the syntax element upsample_filter|[view_id
[1]] is equal to three. If so, then control is passed to a function
block 636. Otherwise, control is passed to a function block
640.

The function block 636 parses the following syntax ele-
ments and passes control to a function block 638: vert_dim
[view_id[i]]; hor_dim[view_id[i]]; and quantizer[view_id
[ill-

The function block 638 parses the filter coefficients for
each YUV component, and passes control to the function
block 640.

The function block 640 increments the variable i, and
returns control to the decision block 612.

The function block 624 decodes each picture using the
MPEG-4 AVC Standard or other single view codec, and
passes control to a function block 626. The function block
626 separates each view from the picture using the high level
syntax, and passes control to an end block 699.

Turning to FIG. 7, including FIGS. 7A and 7B, an exem-
plary method for encoding pictures for a plurality of views
and depths using the MPEG-4 AVC Standard is indicated
generally by the reference numeral 700.

The method 700 includes a start block 702 that passes
control to a function block 704. The function block 704
arranges each view and corresponding depth at a particular
time instance as a sub-picture in tile format, and passes con-
trol to a function block 706. The function block 706 sets a
syntax element num_coded_views_minusl, and passes con-
trol to a function block 708. The function block 708 sets
syntax elements org_pic_width_in_mbs_minusl and
org_pic_height_in_mbs_minusl, and passes control to a
function block 710. The function block 710 sets a variable i
equal to zero, and passes control to a decision block 712. The
decision block 712 determines whether or not the variable i is
less than the number of views. If so, then control is passed to
a function block 714. Otherwise, control is passed to a func-
tion block 724.

The function block 714 sets a syntax element view_id[i],
and passes control to a function block 716. The function block
716 sets a syntax element num_parts[view_id[i]], and passes
control to a function block 718. The function block 718 sets a
variable j equal to zero, and passes control to a decision block
720. The decision block 720 determines whether or not the
current value of the variable j is less than the current value of
the syntax element num_parts[view_id[i]]. If so, then control
is passed to a function block 722. Otherwise, control is passed
to a function block 728.

The function block 722 sets the following syntax elements,
increments the variable j, and then returns control to the
decision block 720: depth_flag[view_id[i]][j]; flip_dir[vie-
w_id[i]][j]; loc_left_offset[view_id[i]][j]; loc_top_offset
[view_id[1]][j]; frame_crop_left_offset[view_id[i]][j];
frame_crop_right_offset[view_id[i]][j]; frame_crop_to-
p_offset[view_id[i]][j]; and frame_crop_bottom_offset|vie-
w_id[iT][j].

The function block 728 sets a syntax element upsam-
ple_view_{flag[view_id[i]], and passes control to a decision
block 730. The decision block 730 determines whether or not
the current value of the syntax element upsample_view_flag

10

15

20

25

30

35

40

45

50

55

60

65

12

[view_id[i]] is equal to one. If so, then control is passed to a
function block 732. Otherwise, control is passed to a decision
block 734.

The function block 732 sets a syntax element upsam-
ple_filter[view_id[i]], and passes control to the decision
block 734.

The decision block 734 determines whether or not the
current value of the syntax element upsample_filter| view_id
[1]] is equal to three. If so, then control is passed to a function
block 736. Otherwise, control is passed to a function block
740.

The function block 736 sets the following syntax elements
and passes control to a function block 738: vert_dim|view_id
[1]]; hor_dim[view_id[i]]; and quantizer|view_id[i]].

The function block 738 sets the filter coefficients for each
YUV component, and passes control to the function block
740.

The function block 740 increments the variable i, and
returns control to the decision block 712.

The function block 724 writes these syntax elements to at
least one of the Sequence Parameter Set (SPS), Picture
Parameter Set (PPS), Supplemental Enhancement Informa-
tion (SEI) message, Network Abstraction Layer (NAL) unit
header, and slice header, and passes control to a function
block 726. The function block 726 encodes each picture using
the MPEG-4 AVC Standard or other single view codec, and
passes control to an end block 799.

Turning to FIG. 8, including FIGS. 8A and 8B, an exem-
plary method for decoding pictures for a plurality of views
and depths using the MPEG-4 AVC Standard is indicated
generally by the reference numeral 800.

The method 800 includes a start block 802 that passes
control to a function block 804. The function block 804 parses
the following syntax elements from at least one of the
Sequence Parameter Set (SPS), Picture Parameter Set (PPS),
Supplemental Enhancement Information (SEI) message,
Network Abstraction Layer (NAL) unit header, and slice
header, and passes control to a function block 806. The func-
tion block 806 parses a syntax element num_coded_
views_minus1, and passes control to a function block 808.
The function block 808 parses syntax elements org
pic_width_in_mbs_minus1 and org_pic_height_in_mbs_mi-
nus1, and passes control to a function block 810. The function
block 810 sets a variable i equal to zero, and passes control to
a decision block 812. The decision block 812 determines
whether or not the variable iis less than the number of views.
If so, then control is passed to a function block 814. Other-
wise, control is passed to a function block 824.

The function block 814 parses a syntax element view_id[1i],
and passes control to a function block 816. The function block
816 parses a syntax element num_parts_minus][view_id[i]],
and passes control to a function block 818. The function block
818 sets a variable j equal to zero, and passes control to a
decision block 820. The decision block 820 determines
whether or not the current value of the variable j is less than
the current value of the syntax element num_parts[view_id
[1]]. If so, then control is passed to a function block 822.
Otherwise, control is passed to a function block 828.

The function block 822 parses the following syntax ele-
ments, increments the variable j, and then returns control to
the decision block 820: depth_flag[view_id[i]][j]; flip_dir
[view_id[i]][j]; loc_left_offset[view_id[i]][j]; loc_top_offset
[view_id[i]][j]; frame_crop_left_offset[view_id[i]][j];
frame_crop_right_offset[view_id[i]][j]; frame_crop_to-
p_offset[view_id[i]][j]; and frame_crop_bottom_offset|vie-

w_id[i]][j]-

US 9,219,923 B2

13

The function block 828 parses a syntax element upsam-
ple_view_{flag[view_id[i]], and passes control to a decision
block 830. The decision block 830 determines whether or not
the current value of the syntax element upsample_view_flag
[view_id[1]] is equal to one. If so, then control is passed to a
function block 832. Otherwise, control is passed to a decision
block 834.

The function block 832 parses a syntax element upsam-
ple_filter[view_id[i]], and passes control to the decision
block 834.

The decision block 834 determines whether or not the
current value of the syntax element upsample_filter|[view_id
[1]] is equal to three. If so, then control is passed to a function
block 836. Otherwise, control is passed to a function block
840.

The function block 836 parses the following syntax ele-
ments and passes control to a function block 838: vert_dim
[view_id[i]]; hor_dim[view_id[i]]; and quantizer[view_id
[ill-

The function block 838 parses the filter coefficients for
each YUV component, and passes control to the function
block 840.

The function block 840 increments the variable i, and
returns control to the decision block 812.

The function block 824 decodes each picture using the
MPEG-4 AVC Standard or other single view codec, and
passes control to a function block 826. The function block
826 separates each view and corresponding depth from the
picture using the high level syntax, and passes control to a
function block 827. The function block 827 potentially per-
forms view synthesis using the extracted view and depth
signals, and passes control to an end block 899.

With respect to the depth used in FIGS. 7 and 8, FIG. 9
shows an example of a depth signal 900, where depth is
provided as a pixel value for each corresponding location of
an image (not shown). Further, FIG. 10 shows an example of
two depth signals included in a tile 1000. The top-right por-
tion of tile 1000 is a depth signal having depth values corre-
sponding to the image on the top-left oftile 1000. The bottom-
right portion of tile 1000 is a depth signal having depth values
corresponding to the image on the bottom-left of tile 1000.

Turning to FIG. 11, an example of 5 views tiled on a single
frame is indicated generally by the reference numeral 1100.
The top four views are in a normal orientation. The fifth view
is also in a normal orientation, but is split into two portions
along the bottom of tile 1100. A left-portion of the fifth view
shows the “top” of the fifth view, and a right-portion of the
fifth view shows the “bottom” of the fifth view.
Encoding/Decoding Using a Multi-View Video Encoding/
Decoding Standard/Recommendation

Turning to FIG. 12, an exemplary Multi-view Video Cod-
ing (MVC) encoder is indicated generally by the reference
numeral 1200. The encoder 1200 includes a combiner 1205
having an output connected in signal communication with an
input of a transformer 1210. An output of the transformer
1210 is connected in signal communication with an input of
quantizer 1215. An output of the quantizer 1215 is connected
in signal communication with an input of an entropy coder
1220 and an input of an inverse quantizer 1225. An output of
the inverse quantizer 1225 is connected in signal communi-
cation with an input of an inverse transformer 1230. An output
of the inverse transformer 1230 is connected in signal com-
munication with a first non-inverting input of a combiner
1235. An output of the combiner 1235 is connected in signal
communication with an input of an intra predictor 1245 and
an input of a deblocking filter 1250. An output of the deblock-
ing filter 1250 is connected in signal communication with an

10

15

25

40

45

50

55

14

input of a reference picture store 1255 (for view 1). An output
of the reference picture store 1255 is connected in signal
communication with a first input of a motion compensator
1275 and a first input of a motion estimator 1280. An output
of the motion estimator 1280 is connected in signal commu-
nication with a second input of the motion compensator 1275

An output of a reference picture store 1260 (for other
views) is connected in signal communication with a first input
of a disparity estimator 1270 and a first input of a disparity
compensator 1265. An output of the disparity estimator 1270
is connected in signal communication with a second input of
the disparity compensator 1265.

An output of the entropy decoder 1220 is available as an
output of the encoder 1200. A non-inverting input of the
combiner 1205 is available as an input of the encoder 1200,
and is connected in signal communication with a second input
of the disparity estimator 1270, and a second input of the
motion estimator 1280. An output of a switch 1285 is con-
nected in signal communication with a second non-inverting
input of the combiner 1235 and with an inverting input of the
combiner 1205. The switch 1285 includes a first input con-
nected in signal communication with an output of the motion
compensator 1275, a second input connected in signal com-
munication with an output of the disparity compensator 1265,
and a third input connected in signal communication with an
output of the intra predictor 1245.

A mode decision module 1240 has an output connected to
the switch 1285 for controlling which input is selected by the
switch 1285.

Turning to FIG. 13, an exemplary Multi-view Video Cod-
ing (MVC) decoder is indicated generally by the reference
numeral 1300. The decoder 1300 includes an entropy decoder
1305 having an output connected in signal communication
with an input of an inverse quantizer 1310. An output of the
inverse quantizer is connected in signal communication with
an input of an inverse transformer 1315. An output of the
inverse transformer 1315 is connected in signal communica-
tion with a first non-inverting input of a combiner 1320. An
output of the combiner 1320 is connected in signal commu-
nication with an input of a deblocking filter 1325 and an input
of an intra predictor 1330. An output of the deblocking filter
1325 is connected in signal communication with an input of a
reference picture store 1340 (for view 1). An output of the
reference picture store 1340 is connected in signal commu-
nication with a first input of a motion compensator 1335.

An output of a reference picture store 1345 (for other
views) is connected in signal communication with a first input
of a disparity compensator 1350.

An input of the entropy coder 1305 is available as an input
to the decoder 1300, for receiving a residue bitstream. More-
over, an input of a mode module 1360 is also available as an
input to the decoder 1300, for receiving control syntax to
control which input is selected by the switch 1355. Further, a
second input of the motion compensator 1335 is available as
an input of the decoder 1300, for receiving motion vectors.
Also, a second input of the disparity compensator 1350 is
available as an input to the decoder 1300, for receiving dis-
parity vectors.

An output of a switch 1355 is connected in signal commu-
nication with a second non-inverting input of the combiner
1320. A first input of the switch 1355 is connected in signal
communication with an output of the disparity compensator
1350. A second input of the switch 1355 is connected in signal
communication with an output of the motion compensator
1335. A third input of the switch 1355 is connected in signal
communication with an output of the intra predictor 1330. An
output of the mode module 1360 is connected in signal com-

US 9,219,923 B2

15

munication with the switch 1355 for controlling which input
is selected by the switch 1355. An output of the deblocking
filter 1325 is available as an output of the decoder 1300.

Turning to FIG. 14, an exemplary method for processing
pictures for a plurality of views in preparation for encoding
the pictures using the multi-view video coding (MVC) exten-
sion of the MPEG-4 AVC Standard is indicated generally by
the reference numeral 1400.

The method 1400 includes a start block 1405 that passes
control to a function block 1410. The function block 1410
arranges every N views, among a total of M views, at a
particular time instance as a super-picture in tile format, and
passes control to a function block 1415. The function block
1415 sets a syntax element num_coded_views_minus], and
passes control to a function block 1420. The function block
1420 sets a syntax element view_id[i] for all (num_
coded_views_minus1+1) views, and passes control to a func-
tion block 1425. The function block 1425 sets the inter-view
reference dependency information for anchor pictures, and
passes control to a function block 1430. The function block
1430 sets the inter-view reference dependency information
for non-anchor pictures, and passes control to a function
block 1435. The function block 1435 sets a syntax element
pseudo_view_present_flag, and passes control to a decision
block 1440. The decision block 1440 determines whether or
not the current value of the syntax element pseudo_view_pre-
sent_flag is equal to true. If so, then control is passed to a
function block 1445. Otherwise, control is passed to an end
block 1499.

The function block 1445 sets the following syntax ele-
ments, and passes control to a function block 1450:
tiling_mode; org_pic_width_in_mbs_minusl; and org_
pic_height_in_mbs_minus]. The function block 1450 calls a
syntax element pseudo_view_info(view_id) for each coded
view, and passes control to the end block 1499.

Turning to FIG. 15, including FIGS. 15A and 15B, an
exemplary method for encoding pictures for a plurality of
views using the multi-view video coding (MVC) extension of
the MPEG-4 AVC Standard is indicated generally by the
reference numeral 1500.

The method 1500 includes a start block 1502 that has an
input parameter pseudo_view_id and passes control to a func-
tion block 1504. The function block 1504 sets a syntax ele-
ment num_sub_views_minus1, and passes control to a func-
tion block 1506. The function block 1506 sets a variable i
equal to zero, and passes control to a decision block 1508. The
decision block 1508 determines whether or not the variable i
is less than the number of sub_views. If so, then control is
passed to a function block 1510. Otherwise, control is passed
to a function block 1520.

The function block 1510 sets a syntax element sub_vie-
w_id[i], and passes control to a function block 1512. The
function block 1512 sets a syntax element num_parts_minus1
[sub_view_id[i]], and passes control to a function block 1514.
The function block 1514 sets a variable j equal to zero, and
passes control to a decision block 1516. The decision block
1516 determines whether or not the variable j is less than the
syntax element num_parts_minusl[sub_view_id[i]]. If so,
then control is passed to a function block 1518. Otherwise,
control is passed to a decision block 1522.

The function block 1518 sets the following syntax ele-
ments, increments the variable j, and returns control to the
decision block 1516: loc_left_offset[sub_view_id[i]][j];
loc_top_offset[sub_view_id[i]][j]; frame_crop_left_offset
[sub_view_id[i]][j]; frame_crop_right_offset[sub_view_id
[i]17]; frame_crop_top_offset[sub_view_id[i]][j]; and
frame_crop_bottom_offset[sub_view_id[i][j].

10

15

20

25

30

35

40

45

50

55

60

65

16

The function block 1520 encodes the current picture for the
current view using multi-view video coding (MVC), and
passes control to an end block 1599.

The decision block 1522 determines whether or not a syn-
tax element tiling_mode is equal to zero. If so, then control is
passed to a function block 1524. Otherwise, control is passed
to a function block 1538.

The function block 1524 sets a syntax element flip_dir
[sub_view_id[i]] and a syntax element upsample_view_flag
[sub_view_id[i]], and passes control to a decision block 1526.
The decision block 1526 determines whether or not the cur-
rent value of the syntax eclement upsample view_
flag[sub_view_id[i]] is equal to one. If so, then control is
passed to a function block 1528. Otherwise, control is passed
to a decision block 1530.

The function block 1528 sets a syntax element upsam-
ple_filter[sub_view_id[i]], and passes control to the decision
block 1530. The decision block 1530 determines whether or
not a value of the syntax element upsample_filter[sub_vie-
w_id[i]] is equal to three. If so, the control is passed to a
function block 1532. Otherwise, control is passed to a func-
tion block 1536.

The function block 1532 sets the following syntax ele-
ments, and passes control to a function block 1534: vert_dim
[sub_view_id[i]]; hor_dim[sub_view_id[i]]; and quantizer
[sub_view_id[i]]. The function block 1534 sets the filter
coefficients for each YUV component, and passes control to
the function block 1536.

The function block 1536 increments the variable i, and
returns control to the decision block 1508.

The function block 1538 sets a syntax element pixel_dist_x
[sub_view_id[i]] and the syntax element flip_dist_y[sub_vie-
w_id[i]], and passes control to a function block 1540. The
function block 1540 sets the variable j equal to zero, and
passes control to a decision block 1542. The decision block
1542 determines whether or not the current value of the
variable j is less than the current value of the syntax element
num_parts[sub_view_id[i]]. If so, then control is passed to a
function block 1544. Otherwise, control is passed to the func-
tion block 1536.

The function block 1544 sets a syntax element num_pix-
el_tiling_filter_coeffs_minus1[sub_view_id[i]], and passes
control to a function block 1546. The function block 1546 sets
the coefficients for all the pixel tiling filters, and passes con-
trol to the function block 1536.

Turning to FIG. 16, an exemplary method for processing
pictures for a plurality of views in preparation for decoding
the pictures using the multi-view video coding (MVC) exten-
sion of the MPEG-4 AVC Standard is indicated generally by
the reference numeral 1600.

The method 1600 includes a start block 1605 that passes
control to a function block 1615. The function block 1615
parses a syntax element num_coded_views_minusl, and
passes control to a function block 1620. The function block
1620 parses a syntax element view_id[i] for all (num_
coded_views_minus1+1) views, and passes control to a func-
tion block 1625. The function block 1625 parses the inter-
view reference dependency information for anchor pictures,
and passes control to a function block 1630. The function
block 1630 parses the inter-view reference dependency infor-
mation for non-anchor pictures, and passes control to a func-
tion block 1635. The function block 1635 parses a syntax
element pseudo_view_present_flag, and passes control to a
decision block 1640. The decision block 1640 determines
whether or not the current value of the syntax element

US 9,219,923 B2

17

pseudo_view_present_flag is equal to true. If so, then control
is passed to a function block 1645. Otherwise, control is
passed to an end block 1699.

The function block 1645 parses the following syntax ele-
ments, and passes control to a function block 1650:
tiling_mode; org_pic_width_in_mbs_minusl; and org_
pic_height_in_mbs_minus]. The function block 1650 calls a
syntax element pseudo_view_info(view_id) for each coded
view, and passes control to the end block 1699.

Turning to FIG. 17, including FIGS. 17A and 17B, an
exemplary method for decoding pictures for a plurality of
views using the multi-view video coding (MVC) extension of
the MPEG-4 AVC Standard is indicated generally by the
reference numeral 1700.

The method 1700 includes a start block 1702 that starts
with input parameter pseudo_view_id and passes control to a
function block 1704. The function block 1704 parses a syntax
element num_sub_views_minusl, and passes control to a
function block 1706. The function block 1706 sets a variable
i equal to zero, and passes control to a decision block 1708.
The decision block 1708 determines whether or not the vari-
able i is less than the number of sub_views. If so, then control
is passed to a function block 1710. Otherwise, control is
passed to a function block 1720.

The function block 1710 parses a syntax element sub_vie-
w_id[i], and passes control to a function block 1712. The
function block 1712 parses a syntax element num_parts_mi-
nusl[sub_view_id[i]], and passes control to a function block
1714. The function block 1714 sets a variable j equal to zero,
and passes control to a decision block 1716. The decision
block 1716 determines whether or not the variable j is less
than the syntax element num_parts_minus1[sub_view_id[i]].
If so, then control is passed to a function block 1718. Other-
wise, control is passed to a decision block 1722.

The function block 1718 sets the following syntax ele-
ments, increments the variable j, and returns control to the
decision block 1716: loc_left_offset[sub_view_id[i]][j];
loc_top_offset[sub_view_id[i]][j]; frame_crop_left_offset
[sub_view_id[i]][j]; frame_crop_right_offset[sub_view_id
[i]17]; frame_crop_top_offset[sub_view_id[i]][j]; and
frame_crop_bottom_offset[sub_view_id[i][j].

The function block 1720 decodes the current picture for the
current view using multi-view video coding (MVC), and
passes control to a function block 1721. The function block
1721 separates each view from the picture using the high level
syntax, and passes control to an end block 1799.

The separation of each view from the decoded picture is
done using the high level syntax indicated in the bitstream.
This high level syntax may indicate the exact location and
possible orientation of the views (and possible corresponding
depth) present in the picture.

The decision block 1722 determines whether or not a syn-
tax element tiling_mode is equal to zero. If so, then control is
passed to a function block 1724. Otherwise, control is passed
to a function block 1738.

The function block 1724 parses a syntax element flip_dir
[sub_view_id[i]] and a syntax element upsample_view_flag
[sub_view_id[i]], and passes control to a decision block 1726.
The decision block 1726 determines whether or not the cur-
rent value of the syntax element upsample view_
flag[sub_view_id[i]] is equal to one. If so, then control is
passed to a function block 1728. Otherwise, control is passed
to a decision block 1730.

The function block 1728 parses a syntax element
upsample_filter[sub_view_id[i]], and passes control to the
decision block 1730. The decision block 1730 determines
whether or not a value of the syntax element upsample_filter

25

30

40

45

55

18

[sub_view_id[i]] is equal to three. If so, the control is passed
to a function block 1732. Otherwise, control is passed to a
function block 1736.

The function block 1732 parses the following syntax ele-
ments, and passes control to a function block 1734: vert_dim
[sub_view_id[i]]; hor_dim[sub_view_id[i]]; and quantizer
[sub_view_id[i]]. The function block 1734 parses the filter
coefficients for each YUV component, and passes control to
the function block 1736.

The function block 1736 increments the variable i, and
returns control to the decision block 1708.

The function block 1738 parses a syntax element pixel_d-
ist_x[sub_view_id[i]] and the syntax element flip_dist_y
[sub_view_id[i]], and passes control to a function block 1740.
The function block 1740 sets the variable j equal to zero, and
passes control to a decision block 1742. The decision block
1742 determines whether or not the current value of the
variable j is less than the current value of the syntax element
num_parts[sub_view_id[i]]. If so, then control is passed to a
function block 1744. Otherwise, control is passed to the func-
tion block 1736.

The function block 1744 parses a syntax element num_p-
ixel_tiling_filter_coeffs_minus1[sub_view_id[i]], and
passes control to a function block 1746. The function block
1776 parses the coefficients for all the pixel tiling filters, and
passes control to the function block 1736.

Turning to FIG. 18, an exemplary method for processing
pictures for a plurality of views and depths in preparation for
encoding the pictures using the multi-view video coding
(MVCQ) extension of the MPEG-4 AVC Standard is indicated
generally by the reference numeral 1800.

The method 1800 includes a start block 1805 that passes
control to a function block 1810. The function block 1810
arranges every N views and depth maps, among a total of M
views and depth maps, at a particular time instance as a
super-picture in tile format, and passes control to a function
block 1815. The function block 1815 sets a syntax element
num_coded_views_minus1, and passes control to a function
block 1820. The function block 1820 sets a syntax element
view_id[i] forall (num_coded_views_minus1+1) depths cor-
responding to view_id[i], and passes control to a function
block 1825. The function block 1825 sets the inter-view ref-
erence dependency information for anchor depth pictures,
and passes control to a function block 1830. The function
block 1830 sets the inter-view reference dependency infor-
mation for non-anchor depth pictures, and passes control to a
function block 1835. The function block 1835 sets a syntax
element pseudo_view_present_flag, and passes control to a
decision block 1840. The decision block 1840 determines
whether or not the current value of the syntax element
pseudo_view_present_flag is equal to true. If so, then control
is passed to a function block 1845. Otherwise, control is
passed to an end block 1899.

The function block 1845 sets the following syntax ele-
ments, and passes control to a function block 1850:
tiling_mode; org pic_width_in_mbs_minusl; and org_
pic_height_in_mbs_minus1. The function block 1850 calls a
syntax element pseudo_view_info(view_id) for each coded
view, and passes control to the end block 1899.

Turning to FIG. 19, including FIGS. 19A and 19B, an
exemplary method for encoding pictures for a plurality of
views and depths using the multi-view video coding (MVC)
extension of the MPEG-4 AVC Standard is indicated gener-
ally by the reference numeral 1900.

The method 1900 includes a start block 1902 that passes
control to a function block 1904. The function block 1904 sets
a syntax element num_sub_views_minus1, and passes con-

US 9,219,923 B2

19
trol to a function block 1906. The function block 1906 sets a
variable i equal to zero, and passes control to a decision block
1908. The decision block 1908 determines whether or not the
variable 1 is less than the number of sub_views. If so, then
control is passed to a function block 1910. Otherwise, control
is passed to a function block 1920.

The function block 1910 sets a syntax element sub_vie-
w_id[i], and passes control to a function block 1912. The
function block 1912 sets a syntax element num_parts_minus1
[sub_view_id[i]], and passes control to a function block 1914.
The function block 1914 sets a variable j equal to zero, and
passes control to a decision block 1916. The decision block
1916 determines whether or not the variable j is less than the
syntax element num_parts_minusl[sub_view_id[i]]. If so,
then control is passed to a function block 1918. Otherwise,
control is passed to a decision block 1922.

The function block 1918 sets the following syntax ele-
ments, increments the variable j, and returns control to the
decision block 1916: loc_left_offset[sub_view_id[i]][j];
loc_top_offset[sub_view_id[i]][j]; frame_crop_left_offset
[sub_view_id[i]][j]; frame_crop_right_offset[sub_view_id
[i]17]; frame_crop_top_offset[sub_view_id[i]][j]; and
frame_crop_bottom_offset[sub_view_id[i][j].

The function block 1920 encodes the current depth for the
current view using multi-view video coding (MVC), and
passes control to an end block 1999. The depth signal may be
encoded similar to the way its corresponding video signal is
encoded. For example, the depth signal for a view may be
included on a tile that includes only other depth signals, or
only video signals, or both depth and video signals. The tile
(pseudo-view) is then treated as a single view for MVC, and
there are also presumably other tiles that are treated as other
views for MVC.

The decision block 1922 determines whether or not a syn-
tax element tiling_mode is equal to zero. If so, then control is
passed to a function block 1924. Otherwise, control is passed
to a function block 1938.

The function block 1924 sets a syntax element flip_dir
[sub_view_id[i]] and a syntax element upsample_view_flag
[sub_view_id[i]], and passes control to a decision block 1926.
The decision block 1926 determines whether or not the cur-
rent value of the syntax element upsample view_
flag[sub_view_id[i]] is equal to one. If so, then control is
passed to a function block 1928. Otherwise, control is passed
to a decision block 1930.

The function block 1928 sets a syntax element upsam-
ple_filter[sub_view_id[i]], and passes control to the decision
block 1930. The decision block 1930 determines whether or
not a value of the syntax element upsample_filter[sub_vie-
w_id[i]] is equal to three. If so, the control is passed to a
function block 1932. Otherwise, control is passed to a func-
tion block 1936.

The function block 1932 sets the following syntax ele-
ments, and passes control to a function block 1934: vert_dim
[sub_view_id[i]]; hor_dim[sub_view_id[i]]; and quantizer
[sub_view_id[i]]. The function block 1934 sets the filter
coefficients for each YUV component, and passes control to
the function block 1936.

The function block 1936 increments the variable i, and
returns control to the decision block 1908.

The function block 1938 sets a syntax element pixel_dist_x
[sub_view_id[i]] and the syntax element flip_dist_y[sub_vie-
w_id[i]], and passes control to a function block 1940. The
function block 1940 sets the variable j equal to zero, and
passes control to a decision block 1942. The decision block
1942 determines whether or not the current value of the
variable j is less than the current value of the syntax element

10

15

20

25

30

35

40

45

50

55

60

65

20

num_parts[sub_view_id[i]]. If so, then control is passed to a
function block 1944. Otherwise, control is passed to the func-
tion block 1936.

The function block 1944 sets a syntax element num_pix-
el_tiling_filter_coeffs_minus1[sub_view_id[i]], and passes
control to a function block 1946. The function block 1946 sets
the coefficients for all the pixel tiling filters, and passes con-
trol to the function block 1936.

Turning to FIG. 20, an exemplary method for processing
pictures for a plurality of views and depths in preparation for
decoding the pictures using the multi-view video coding
(MVCQ) extension of the MPEG-4 AVC Standard is indicated
generally by the reference numeral 2000.

The method 2000 includes a start block 2005 that passes
control to a function block 2015. The function block 2015
parses a syntax element num_coded_views_minusl, and
passes control to a function block 2020. The function block
2020 parses a syntax element view_id[i] for all (num_
coded_views_minus1+1) depths corresponding to view_id
[1], and passes control to a function block 2025. The function
block 2025 parses the inter-view reference dependency infor-
mation for anchor depth pictures, and passes control to a
function block 2030. The function block 2030 parses the
inter-view reference dependency information for non-anchor
depth pictures, and passes control to a function block 2035.
The function block 2035 parses a syntax element
pseudo_view_present_flag, and passes control to a decision
block 2040. The decision block 2040 determines whether or
not the current value of the syntax element pseudo_view_pre-
sent_flag is equal to true. If so, then control is passed to a
function block 2045. Otherwise, control is passed to an end
block 2099.

The function block 2045 parses the following syntax ele-
ments, and passes control to a function block 2050:
tiling_mode; org pic_width_in_mbs_minusl; and org_
pic_height_in_mbs_minus1. The function block 2050 calls a
syntax element pseudo_view_info(view_id) for each coded
view, and passes control to the end block 2099.

Turning to FIG. 21, including FIGS. 21A and 21B, an
exemplary method for decoding pictures for a plurality of
views and depths using the multi-view video coding (MVC)
extension of the MPEG-4 AVC Standard is indicated gener-
ally by the reference numeral 2100.

The method 2100 includes a start block 2102 that starts
with input parameter pseudo_view_id, and passes control to a
function block 2104. The function block 2104 parses a syntax
element num_sub_views_minusl, and passes control to a
function block 2106. The function block 2106 sets a variable
i equal to zero, and passes control to a decision block 2108.
The decision block 2108 determines whether or not the vari-
able i is less than the number of sub_views. If so, then control
is passed to a function block 2110. Otherwise, control is
passed to a function block 2120.

The function block 2110 parses a syntax element sub_vie-
w_id[i], and passes control to a function block 2112. The
function block 2112 parses a syntax element num_parts_mi-
nus1[sub_view_id[i]], and passes control to a function block
2114. The function block 2114 sets a variable j equal to zero,
and passes control to a decision block 2116. The decision
block 2116 determines whether or not the variable j is less
than the syntax element num_parts_minus1[sub_view_id[i]].
If so, then control is passed to a function block 2118. Other-
wise, control is passed to a decision block 2122.

The function block 2118 sets the following syntax ele-
ments, increments the variable j, and returns control to the
decision block 2116: loc_left_offset[sub_view_id[i]][j];
loc_top_offset[sub_view_id[i]][j]; frame_crop_left_offset

US 9,219,923 B2

21
frame_crop_right_offset[sub_view_id
and

[sub_view_id[i]][j];
[i]17]; frame_crop_top_offset[sub_view_id[i]][j];
frame_crop_bottom_offset[sub_view_id[i][j].

The function block 2120 decodes the current picture using
multi-view video coding (MVC), and passes control to a
function block 2121. The function block 2121 separates each
view from the picture using the high level syntax, and passes
control to an end block 2199. The separation of each view
using high level syntax is as previously described.

The decision block 2122 determines whether or not a syn-
tax element tiling_mode is equal to zero. If so, then control is
passed to a function block 2124. Otherwise, control is passed
to a function block 2138.

The function block 2124 parses a syntax element flip_dir
[sub_view_id[i]] and a syntax element upsample_view_flag
[sub_view_id[i]], and passes control to a decision block 2126.
The decision block 2126 determines whether or not the cur-
rent value of the syntax element upsample view_
flag[sub_view_id[i]] is equal to one. If so, then control is
passed to a function block 2128. Otherwise, control is passed
to a decision block 2130.

The function block 2128 parses a syntax element
upsample_filter[sub_view_id[i]], and passes control to the
decision block 2130. The decision block 2130 determines
whether or not a value of the syntax element upsample_filter
[sub_view_id[i]] is equal to three. If so, the control is passed
to a function block 2132. Otherwise, control is passed to a
function block 2136.

The function block 2132 parses the following syntax ele-
ments, and passes control to a function block 2134: vert_dim
[sub_view_id[i]]; hor_dim[sub_view_id[i]]; and quantizer
[sub_view_id[i]]. The function block 2134 parses the filter
coefficients for each YUV component, and passes control to
the function block 2136.

The function block 2136 increments the variable i, and
returns control to the decision block 2108.

The function block 2138 parses a syntax element pixel_d-
ist_x[sub_view_id[i]] and the syntax element flip_dist_y
[sub_view_id[i]], and passes control to a function block 2140.
The function block 2140 sets the variable j equal to zero, and
passes control to a decision block 2142. The decision block
2142 determines whether or not the current value of the
variable j is less than the current value of the syntax element
num_parts[sub_view_id[i]]. If so, then control is passed to a
function block 2144. Otherwise, control is passed to the func-
tion block 2136.

The function block 2144 parses a syntax element num_p-
ixel_tiling_filter_coeffs_minus1[sub_view_id[i]], and
passes control to a function block 2146. The function block
2146 parses the coefficients for all the pixel tiling filters, and
passes control to the function block 2136.

Turning to FIG. 22, tiling examples at the pixel level are
indicated generally by the reference numeral 2200. FIG. 22 is
described further below.

View Tiling Using MPEG-4 AVC or MVC

An application of multi-view video coding is free view
point TV (or FTV). This application requires that the user can
freely move between two or more views. In order to accom-
plish this, the “virtual” views in between two views need to be
interpolated or synthesized. There are several methods to
perform view interpolation. One of the methods uses depth
for view interpolation/synthesis.

Each view can have an associated depth signal. Thus, the
depth can be considered to be another form of video signal.
FIG. 9 shows an example of a depth signal 900. In order to
enable applications such as FTV, the depth signal is transmit-
ted along with the video signal. In the proposed framework of

30

40

45

50

55

65

22

tiling, the depth signal can also be added as one of the tiles.
FIG. 10 shows an example of depth signals added as tiles. The
depth signals/tiles are shown on the right side of FIG. 10.

Once the depth is encoded as a tile of the whole frame, the
high level syntax should indicate which tile is the depth signal
so that the renderer can use the depth signal appropriately.

In the case when the input sequence (such as that shown in
FIG. 1) is encoded using a MPEG-4 AVC Standard encoder
(or an encoder corresponding to a different video coding
standard and/or recommendation), the proposed high level
syntax may be present in, for example, the Sequence Param-
eter Set (SPS), the Picture Parameter Set (PPS), a slice header,
and/or a Supplemental Enhancement Information (SEI) mes-
sage. An embodiment of the proposed method is shown in
TABLE 1 where the syntax is present in a Supplemental
Enhancement Information (SEI) message.

In the case when the input sequences of the pseudo views
(such as that shown in FIG. 1) is encoded using the multi-view
video coding (MVC) extension of the MPEG-4 AVC Stan-
dard encoder (or an encoder corresponding to multi-view
video coding standard with respect to a different video coding
standard and/or recommendation), the proposed high level
syntax may be present in the SPS, the PPS, slice header, an
SEI message, or a specified profile. An embodiment of the
proposed method is shown in TABLE 1. TABLE 1 shows
syntax elements present in the Sequence Parameter Set (SPS)
structure, including syntax elements proposed in accordance

with an embodiment of the present principles.
TABLE 1
seq_parameter_set_mvc_extension() { C Descriptor
num_views_minus_ 1 ue(v)
for(i = 0; i <= num_views_minus_1; i++)
view_id[i] ue(v)
for(i = 0; i <= num_views_minus_1; i++) {
num_anchor_refs_|0[i] ue(v)
for(j = 0; j < num_anchor_refs_IO[i]; j++)
anchor_ref 10[i][j] ue(v)
num_anchor_refs_|1[i] ue(v)
for(j = 0; j < num_anchor_refs_l1[i]; j++)
anchor_ref 11[i][j] ue(v)
¥
for(i = 0; i <= num_views_minus_1; i++) {
num_non_anchor_refs_|0[i] ue(v)
for(j = 0; j < num_non_anchor_refs_lO[i]; j++)
non_anchor_ref 10[i][j] ue(v)
num_non_anchor_refs_|1[i] ue(v)
for(j = 0; j < num_non_anchor_refs_I1[i]; j++)
non_anchor_ref 11[i][j] ue(v)
¥
pseudo_view_present_flag u(l)
if (pseudo_view_present_flag) {
tiling_mode
org_pic_width_in_mbs_minusl
org_pic_height_in_mbs_minusl
for(i=0;i<num_views_minus_1; i++)
pseudo_view_info(i);
¥
¥
TABLE 2 shows syntax elements for the pseudo_

view_info syntax element of TABLE 1, in accordance with an
embodiment of the present principles.

US 9,219,923 B2

23 24
TABLE 2
pseudo_view_info (pseudo_view_id) { C Descriptor
num_sub_views_minus_1[pseudo_view_id] 5 ue(v)
if (num_sub_views_minus_1 !=0) {
for (i=0;i<num_sub_views_minus_1[pseudo_view_id]; i++) {
sub_view_id[i] 5 ue(v)
num_parts_minusl[sub_view_id[i]] 5 ue(v)
for(j = 0; j <= num_parts_minusl [sub_view_id[i]]; j++) {
loc_left_offset[sub_view_id[i]][]j] 5 ue(v)
loc_top_offset[sub_view_id[i]] []] 5 ue(v)
frame_crop_left_offset[sub_view_id[i]][]j] 5 ue(v)
frame_crop_right offset[sub_view_id[i]] []] 5 ue(v)
frame_crop_top_offset[sub_view_id[i]] []] 5 ue(v)
frame_crop_bottom_offset[sub_view_id[i]] []] 5 ue(v)
¥
if (tiling_mode ==0) {
flip_dir{sub_view_id[i][]] 5 u(2)
upsample_view_flag[sub_view_id[i]] 5 u(l)
iftupsample_view_flag[sub_view_id[i]])
upsample_filter[sub_view_id[i]] 5 u(2)
iflupsample_fiter[sub_view_id[i]] == 3) {
vert_dim[sub_view_id[i]] 5 ue(v)
hor_dim[sub_view_id[i]] 5 ue(v)
quantizer[sub_view_id[i]] 5 ue(v)
for (yuv= 0; yuv<3; yuv++) {
for (y = 0; y < vert_dim[sub_view_id[i]] - 1; y ++) {
for (x = 0; x <hor_dim[sub_view_id[i]] - 1; x ++)
filter_coeffs[sub_view_id[i]] [yuv][y][x] 5 se(v)
¥
¥
}
} // if(tiling_mode == 0)
else if (tiling_mode == 1) {
pixel_dist x[sub_view_id[i]]
pixel_dist_y[sub_view_id[i]]
for(j = 0; j <= num_parts[sub_view_id[i]]; j++) {
num_pixel_tiling_filter coeffs_minusl [sub_view_id[i]][j]
for (coeff_idx = 0; coeff_idx <=
num_pixel_tiling filter coeffs_minusl [sub_view_id[i]][j]; j++)
pixel_tiling filter_coeffs[sub_view_id[i]][j]
}// for (j =0; j <= num_parts[sub_view_id[i]]; j++)
} // else if (tiling_mode == 1)
} // for (1 =0;i<num_sub_views_minus_1; i++)
} //if (num_sub_views_minus_1 !=0)
40

Semantics of the Syntax Elements Presented in TABLE 1 and
TABLE 2

pseudo_view_present_flag equal to true indicates that
some view is a super view of multiple sub-views.

tiling_mode equal to 0 indicates that the sub-views are tiled
atthe picture level. A value of 1 indicates that the tiling is done
at the pixel level.

The new SEI message could use a value for the SEI payload
type that has not been used in the MPEG-4 AVC Standard or
an extension of the MPEG-4 AVC Standard. The new SEI
message includes several syntax elements with the following
semantics.

num_coded_views_minus] plus 1 indicates the number of
coded views supported by the bitstream. The value of
num_coded_views_minus] is in the scope of 0 to 1023, inclu-
sive.

org_pic_width_in_mbs_minus] plus 1 specifies the width
of a picture in each view in units of macroblocks.

The variable for the picture width in units of macroblocks
is derived as follows:

PicWidthInMbs=org_pic_width_in_mbs_minus1+1

The variable for picture width for the luma component is
derived as follows:

PicWidthInSamples.=PicWidthInMbs*16

45

50

55

60

65

The variable for picture width for the chroma components
is derived as follows:

PicWidthInSamplesC=Pic WidthInMbs*MbWidthC

org_pic_height_in_mbs_minusl plus 1 specifies the
height of a picture in each view in units of macroblocks.

The variable for the picture height_in units of macroblocks
is derived as follows:

PicHeightInMbs=org_pic_height_in_mbs_minus1+1

The variable for picture height for the luma component is
derived as follows:

PicHeightInSamplesl =PicHeightInMbs*16

The variable for picture height for the chroma components
is derived as follows:

PicHeightInSamplesC=PicHeightInMbs*MbHeightC

num_sub_views_minus]l plus 1 indicates the number of
coded sub-views included in the current view. The value of
num_coded_views_minus] is in the scope of 0to 1023, inclu-
sive.

sub_view_id[i] specifies the sub_view_id of the sub-view
with decoding order indicated by i.

num_parts[sub_view_id[i]] specifies the number of parts
that the picture of sub_view_id[i] is split up into.

loc_left_offset[sub_view_id[i]][j] and loc_top_
offset[sub_view_id[i]][j] specify the locations in left and top
pixels offsets, respectively, where the current part j is located
in the final reconstructed picture of the view with sub_vie-
w_id equal to sub_view_id[i].

US 9,219,923 B2

25

view_id[i] specifies the view_id of the view with coding
order indicate by i.

frame_crop_left_offset[view_id[i]][j], frame_crop_
right_offset[view_id[i]][j], frame_crop_top_offset[view_id
[1]1[7], and frame_crop_bottom_offset[view_id[i]][j] specify
the samples of the pictures in the coded video sequence that
are part of num_part j and view_id i, in terms of a rectangular
region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as
follows:

If chroma_format_idc is equal to 0, CropUnitX and Cro-

pUnitY are derived as follows:

CropUnitX=1

CropUnitY=2-frame_mbs_only_flag

Otherwise (chroma_format_idc is equal to 1, 2, or 3), Cro-

pUnitX and CropUnitY are derived as follows:

CropUnitX=SubWidthC

CropUnitY=SubHeightC*(2 frame_mbs_only_flag)

The frame cropping rectangle includes luma samples with
horizontal frame coordinates from the following:

CropUnitX*frame_crop_left_offset to PicWidthln-
SamplesL.-(CropUnitX*frame_crop_right_offset+1) and
vertical frame coordinates from
CropUnitY *frame_crop_top_offset to (16*FrameHeightln-
Mbs) (CropUnitY *frame_crop_bottom_offset+1), inclusive.
The value of frame_crop_left_offset shall be in the range of 0
to (PicWidthlnSamples[./CropUnitX)-(frame_crop_
right_offset+1), inclusive; and the value of frame_crop_to-
p_offset shall be in the range of 0 to (16*FrameHeightInMbs/
CropUnitY)-(frame_crop_bottom_offset+1), inclusive.

When chroma_format_idc is not equal to 0, the corre-
sponding specified samples of the two chroma arrays are the
samples having frame coordinates (x/SubWidthC, y/Sub-
HeightC), where (x, y) are the frame coordinates of the speci-
fied luma samples.

For decoded fields, the specified samples of the decoded
field are the samples that fall within the rectangle specified in
frame coordinates.

num_parts[view_id[i]] specifies the number of parts that
the picture of view_id[i] is split up into.

depth_flag[view_id[i]] specifies whether or not the current
part is a depth signal. If depth_flag is equal to 0, then the
current part is not a depth signal. If depth_flag is equal to 1,
then the current part is a depth signal associated with the view
identified by view_id[i].

flip_dir[sub_view_id[i]][j] specifies the flipping direction
for the current part. flip_dir equal to 0 indicates no flipping,
flip_dir equal to 1 indicates flipping in a horizontal direction,
flip_dir equal to 2 indicates flipping in a vertical direction,
and flip_dir equal to 3 indicates flipping in horizontal and
vertical directions.

flip_dir[view_id[i]][j] specifies the flipping direction for
the current part. flip_dir equal to O indicates no flipping,
flip_dir equal to 1 indicates flipping in a horizontal direction,
flip_dir equal to 2 indicates flipping in vertical direction, and
flip_dir equal to 3 indicates flipping in horizontal and vertical
directions.

loc_left_offset[view_id[i]][j], loc_top_offset[view_id[i]]
[7] specifies the location in pixels offsets, where the current
part j is located in the final reconstructed picture of the view
with view_id equals to view_id[i]

upsample_view_flag[view_id[i]] indicates whether the
picture belonging to the view specified by view_id[i] needs to
be upsampled. upsample_view_flag[view_id[i]] equal to O
specifies that the picture with view_id equal to view_id[i] will

5

10

15

20

25

30

35

40

45

50

55

60

65

26

not be upsampled. upsample_view_flag|view_id[i]] equal to
1 specifies that the picture with view_id equal to view_id[i]
will be upsampled.

upsample_filter[view_id[i]] indicates the type of filter that
is to be used for upsampling. upsample_filter[view_id[i]]
equals to 0 indicates that the 6-tap AVC filter should be used,
upsample_filter[view_id[i]] equals to 1 indicates that the
4-tap SVC filter should be used, upsample_filter[view_id[i]]
2 indicates that the bilinear filter should be used, upsam-
ple_filter[view_id[i]] equals to 3 indicates that custom filter
coefficients are transmitted. When upsample_fiter|[view_id
[1]] is not present it is set to 0. In this embodiment, we use 2D
customized filter. It can be easily extended to 1D filter, and
some other nonlinear filter.

vert_dim[view_id[i]] specifies the vertical dimension of
the custom 2D filter.

hor_dim[view_id[i]] specifies the horizontal dimension of
the custom 2D filter.

quantizer|view_id[i]] specifies the quantization factor for
each filter coefficient.

filter_coeffs[view_id[i]] [yuv][y][x] specifies the quan-
tized filter coefficients. yuv signals the component for which
the filter coefficients apply. yuv equal to O specifies the Y
component, yuv equal to 1 specifies the U component, and
yuv equal to 2 specifies the V component.

pixel_dist_x[sub_view_id[i]] and pixel_dist_y[sub_vie-
w_id[i]] respectively specify the distance in the horizontal
direction and the vertical direction in the final reconstructed
pseudo_view between neighboring pixels in the view with
sub_view_id equal to sub_view_id[i].

num_pixel_tiling_filter_coeffs_minusl [sub_view_id[i]
[j] plus one indicates the number of the filter coefficients
when the tiling_mode is set equal to 1.

pixel_tiling_filter_coeffs[sub_view_id[i][j] signals the fil-
ter coefficients that are required to represent a filter that may
be used to filter the tiled picture.

Tiling Examples at Pixel Level

Turning to FIG. 22, two examples showing the composing
of'a pseudo_view by tiling pixels from four views are respec-
tively indicated by the reference numerals 2210 and 2220,
respectively. The four views are collectively indicated by the
reference numeral 2250. The syntax values for the first
example in FIG. 22 are provided in TABLE 3 below.

TABLE 3

pseudo_view_info (pseudo_view_id) { Value

num_sub_views_minus_1[pseudo_view_id]
sub_view_id[0]

num_parts_minus1[0]

loc_left_offset[0][0]

loc_top_offset[0][0]

pixel_dist_x[0][0]
pixel_dist_y[0][0]
sub_view_id[1]
num_parts_minus1[1]
loc_left_offset[1][0]
loc_top_offset[1][0]
pixel_dist_x[1][0]
pixel_dist_y[1][0]
sub_view_id[2]
num_parts_minus1[2]
loc_left_offset[2][0]
loc_top_offset[2][0]
pixel_dist_x[2][0]

O OO0 0000 OO0 OO0 W

US 9,219,923 B2

27
TABLE 3-continued

pseudo_view_info (pseudo_view_id) { Value

pixel_dist_y[2][0]
sub_view_id[3]
num_parts_minus1[3]
loc_left_offset[3][0]
loc_top_offset[3][0]
pixel_dist_x[3][
pixel_dist_y[3][

OO R = OO0

1l
0]
0]

The syntax values for the second example in FIG. 22 are all
the same except the following two syntax elements: loc_
left_offset[3][0] equal to 5 and loc_top_offset[3][0] equal to
3.

The offset indicates that the pixels corresponding to a view
should begin at a certain offset location. This is shown in FIG.
22 (2220). This may be done, for example, when two views
produce images in which common objects appear shifted
from one view to the other. For example, if first and second
cameras (representing first and second views) take pictures of
an object, the object may appear to be shifted five pixels to the
right in the second view as compared to the first view. This
means that pixel(i-5, j) in the first view corresponds to pixel(i,
j) in the second view. If the pixels of the two views are simply
tiled pixel-by-pixel, then there may not be much correlation
between neighboring pixels in the tile, and spatial coding
gains may be small. Conversely, by shifting the tiling so that
pixel(i-5, j) from view one is placed next to pixel(i, j) from
view two, spatial correlation may be increased and spatial
coding gain may also be increased. This follows because, for
example, the corresponding pixels for the object in the first
and second views are being tiled next to each other.

Thus, the presence of loc_left_offset and loc_top_offset
may benefit the coding efficiency. The offset information may
be obtained by external means. For example, the position
information of the cameras or the global disparity vectors
between the views may be used to determine such offset
information.

As aresult of offsetting, some pixels in the pseudo view are
not assigned pixel values from any view. Continuing the
example above, when tiling pixel(i-5, j) from view one along-
side pixel(i, j) from view two, for values of i=0 . . . 4 there is
no pixel(i-5, j) from view one to tile, so those pixels are
empty in the tile. For those pixels in the pseudo-view (tile)
that are not assigned pixel values from any view, at least one
implementation uses an interpolation procedure similar to the
sub-pixel interpolation procedure in motion compensation in
AVC. That is, the empty tile pixels may be interpolated from
neighboring pixels. Such interpolation may result in greater
spatial correlation in the tile and greater coding gain for the
tile.

In video coding, we can choose a different coding type for
each picture, such as I, P, and B pictures. For multi-view video
coding, in addition, we define anchor and non-anchor pic-
tures. In an embodiment, we propose that the decision of
grouping can be made based on picture type. This information
of grouping is signaled in high level syntax.

Turning to FIG. 11, an example of 5 views tiled on a single
frame is indicated generally by the reference numeral 1100.
In particular, the ballroom sequence is shown with 5 views
tiled on a single frame. Additionally, it can be seen that the
fifth view is split into two parts so that it can be arranged on a
rectangular frame. Here, each view is of QVGA size so the
total frame dimension is 640x600. Since 600 is not a multiple
of 16 it should be extended to 608.

10

15

20

25

40

45

55

65

28
For this example, the possible SEI message could be as
shown in TABLE 4.

TABLE 4

multiview_display_info(payloadSize) { Value

num_coded_views_minus1
org_pic_width_in_mbs_minusl
org_pic_height_in_mbs_minusl
view_id[0]
num_parts[view_id[0]]
depth_flag[view_id[0]][0]
flip_dir[view_id[0]][0]
loc_left offset[view_id[0]][0]
1o}
df

w

loc_top_offset[view_id[0

frame_crop_left_offset[view_i 1

frame_crop_right_offset[view_id[0

frame_crop_top_offset[view_id[0]] [

frame_crop_bottom_offset[view_id[0]] [0]
upsample_view_flag[view_id[0]]
if(upsample_view_flag[view_id[0]]) {

vert_dim[view_id[0]]

hor_dim[view_id[0]] 6

01)
[

O O
O
]

[

)
e
—> 02000000~ OOOW

[N

quantizer[view_id[0]] 32
for (yuv= 0; yuv< 3; yuv++) {
for (y = 0; y < vert_dim[view_id[i]] - 1; y ++) {
for (x = 0; x <hor_dim[view_id[i]] - 1; x ++)
filter_coeffs[view_id[i]] [yuv][y][x] XX
view_id[1] 1
num_parts[view_id[1]] 1
depth_flag[view_id[0]][0] 0
flip_dir[view_id[1]][0] 0
loc_left offset[view_id[1]][0] 0
loc_top_offset[view_id[1]] [0] 0
frame_crop_left offset[view_id[1]][0] 320
frame_crop_right_offset[view_id[1]][0] 640
frame_crop_top_offset[view_id[1]][0] 0
frame_crop_bottom_offset[view_id[1]] [0] 320
upsample_view_flag[view_id[1]] 1
if(upsample_view_flag[view_id[1]]) {
vert_dim[view_id[1]] 6
hor_dim[view_id[1]] 6
quantizer[view_id[1]] 32
for (yuv= 0; yuv< 3; yuv++) {
for (y = 0; y < vert_dim[view_id[i]] - 1; y ++) {
for (x = 0; x <hor_dim[view_id[i]] - 1; x ++)
filter_coeffs[view_id[i]] [yuv][y][x] XX
.. (similarly for view 2,3)
view_id[4] 4
num_parts[view_id[4]] 2
depth_flag[view_id[0]][0] 0
flip_dir[view_id[4]][0] 0
loc_left offset[view_id[4]][0] 0
loc_top_offset[view_id[4 1] [0] 0
frame_crop_left offset[view_id[4 1] [0] 0
frame_crop_right_offset[view_id[4]] [0] 320
frame_crop_top_offset[view_id[4 1] [0] 480
frame_crop_bottom_offset[view_id[4]] [0] 600
flip_dir[view_id[4]][1] 0
loc_left offset[view_id[4]][1] 0
loc_top_offset[view_id[4 1] [1] 120
frame_crop_left offset[view_id[4 1] [1] 320
frame_crop_right_offset[view_id[4]] [1] 640
frame_crop_top_offset[view_id[4 1] [1] 480
frame_crop_bottom_offset[view_id[4]] [1] 600
upsample_view_flag[view_id[4]] 1
if(upsample_view_flag[view_id[4]]) {
vert_dim[view_id[4]] 6
hor_dim[view_id[4]] 6
quantizer[view_id[4]] 32
for (yuv= 0; yuv< 3; yuv++) {
for (y = 0; y < vert_dim[view_id[i]] - 1; y ++) {
for (x = 0; x <hor_dim[view_id[i]] - 1; x ++)
filter_coeffs[view_id[i]] [yuv][y][x] XX

TABLE 5 shows the general syntax structure for transmit-
ting multi-view information for the example shown in
TABLE 4.

US 9,219,923 B2

29
TABLE 5
multiview_display_info(payloadSize) { C Descriptor
num_coded_views_minus1 5 ue(v)
org_pic_width_in_mbs_minusl 5 ue(v)
org_pic_height_in_mbs_minusl 5 ue(v)
for(i=0;i<=num_coded_views_minusl; i++) {
view_id[1] 5 ue(v)
num_parts[view_id[i]] 5 ue(v)
for(j = 0; j <=num_parts[i]; j++) {
depth_flag[view_id[i]][]]
flip_dir[view_id[i]][]] 5 u(2)
loc_left offset[view_id[i]][]j] 5 ue(v)
loc_top_offset[view_id[i]] []] 5 ue(v)
frame_crop_left_offset[view_id[i]][j] 5 ue(v)
frame_crop_right_offset[view_id[i]] []] 5 ue(v)
frame_crop_top_offset[view_id[i]] []] 5 ue(v)
frame_crop_bottom_offset[view_id[i]] []] 5 ue(v)
¥
upsample_view_flag[view_id[i]] 5 u(l)
if(upsample_view_flag[view_id[i]])
upsample_filter[view_id[i]] 5 u(2)
if(upsample_fiter[view_id[i]] == 3) {
vert_dim[view_id[i]] 5 ue(v)
hor_dim[view_id[i]] 5 ue(v)
quantizer[view_id[i]] 5 ue(v)
for (yuv= 0; yuv< 3; yuv++) {
for (y = 0; y < vert_dim[view_id[i]] - 1; y ++) {
for (x = 0; x <hor_dim[view_id[i]] - 1; x ++)
filter_coeffs[view_id[i]] [yuv][y][x] 5 se(v)

Referring to FIG. 23, a video processing device 2300 is
shown. The video processing device 2300 may be, for
example, a set top box or other device that receives encoded
video and provides, for example, decoded video for display to
a user or for storage. Thus, the device 2300 may provide its
output to a television, computer monitor, or a computer or
other processing device.

The device 2300 includes a decoder 2310 that receive a
data signal 2320. The data signal 2320 may include, for
example, an AVC or an MVC compatible stream. The decoder
2310 decodes all or part of the received signal 2320 and
provides as output a decoded video signal 2330 and tiling
information 2340. The decoded video 2330 and the tiling
information 2340 are provided to a selector 2350. The device
2300 also includes a user interface 2360 that receives a user
input 2370. The user interface 2360 provides a picture selec-
tion signal 2380, based on the user input 2370, to the selector
2350. The picture selection signal 2380 and the user input
2370 indicate which of multiple pictures a user desires to have
displayed. The selector 2350 provides the selected picture(s)
as an output 2390. The selector 2350 uses the picture selection
information 2380 to select which of the pictures in the
decoded video 2330 to provide as the output 2390. The selec-
tor 2350 uses the tiling information 2340 to locate the selected
picture(s) in the decoded video 2330.

In various implementations, the selector 2350 includes the
user interface 2360, and in other implementations no user
interface 2360 is needed because the selector 2350 receives
the user input 2370 directly without a separate interface func-
tion being performed. The selector 2350 may be implemented
in software or as an integrated circuit, for example. The selec-
tor 2350 may also incorporate the decoder 2310.

More generally, the decoders of various implementations
described in this application may provide a decoded output
that includes an entire tile. Additionally or alternatively, the

10

20

25

30

35

40

45

50

55

60

65

30

decoders may provide a decoded output that includes only
one or more selected pictures (images or depth signals, for
example) from the tile.

As noted above, high level syntax may be used to perform
signaling in accordance with one or more embodiments ofthe
present principles. The high level syntax may be used, for
example, but is not limited to, signaling any of the following:
the number of coded views present in the larger frame; the
original width and height of all the views; for each coded
view, the view identifier corresponding to the view; for each
coded view, the number of parts the frame of a view is split
into; for each part of the view, the flipping direction (which
can be, for example, no flipping, horizontal flipping only,
vertical flipping only or horizontal and vertical flipping); for
each part of the view, the left position in pixels or number of
macroblocks where the current part belongs in the final frame
for the view; for each part of the view, the top position of the
part in pixels or number of macroblocks where the current
part belongs in the final frame for the view; for each part of the
view, the left position, in the current large decoded/encoded
frame, of the cropping window in pixels or number of mac-
roblocks; for each part of the view, the right position, in the
current large decoded/encoded frame, of the cropping win-
dow in pixels or number of macroblocks; for each part of the
view, the top position, in the current large decoded/encoded
frame, of the cropping window in pixels or number of mac-
roblocks; and, for each part of the view, the bottom position,
in the current large decoded/encoded frame, of the cropping
window in pixels or number of macroblocks; for each coded
view whether the view needs to be upsampled before output
(where if the upsampling needs to be performed, a high level
syntax may be used to indicate the method for upsampling
(including, but not limited to, AVC 6-tap filter, SVC 4-tap
filter, bilinear filter or a custom 1D, 2D linear or non-linear
filter).

It is to be noted that the terms “encoder” and “decoder”
connote general structures and are not limited to any particu-
lar functions or features. For example, a decoder may receive
a modulated carrier that carries an encoded bitstream, and
demodulate the encoded bitstream, as well as decode the
bitstream.

Various methods have been described. Many of these
methods are detailed to provide ample disclosure. It is noted,
however, that variations are contemplated that may vary one
or many of the specific features described for these methods.
Further, many of the features that are recited are known in the
art and are, accordingly, not described in great detail.

Further, reference has been made to the use of high level
syntax for sending certain information in several implemen-
tations. It is to be understood, however, that other implemen-
tations use lower level syntax, or indeed other mechanisms
altogether (such as, for example, sending information as part
of encoded data) to provide the same information (or varia-
tions of that information).

Various implementations provide tiling and appropriate
signaling to allow multiple views (pictures, more generally)
to be tiled into a single picture, encoded as a single picture,
and sent as a single picture. The signaling information may
allow a post-processor to pull the viewspictures apart. Also,
the multiple pictures that are tiled could be views, but at least
one of the pictures could be depth information. These imple-
mentations may provide one or more advantages. For
example, users may want to display multiple views in a tiled
manner, and these various implementations provide an effi-
cient way to encode and transmit or store such views by tiling
them prior to encoding and transmitting/storing them in a
tiled manner.

US 9,219,923 B2

31

Implementations that tile multiple views in the context of
AVC and/or MVC also provide additional advantages. AVC is
ostensibly only used for a single view, so no additional view
is expected. However, such AVC-based implementations can
provide multiple views in an AVC environment because the
tiled views can be arranged so that, for example, a decoder
knows that that the tiled pictures belong to different views (for
example, top left picture in the pseudo-view is view 1, top
right picture is view 2, etc).

Additionally, MVC already includes multiple views, so
multiple views are not expected to be included in a single
pseudo-view. Further, MVC has a limit on the number of
views that can be supported, and such MVC-based imple-
mentations effectively increase the number of views that can
be supported by allowing (as in the AVC-based implementa-
tions) additional views to be tiled. For example, each pseudo-
view may correspond to one of the supported views of MVC,
and the decoder may know that each “supported view” actu-
ally includes four views in a pre-arranged tiled order. Thus, in
such an implementation, the number of possible views is four
times the number of “supported views”.

The implementations described herein may be imple-
mented in, for example, a method or process, an apparatus, or
a software program. Even if only discussed in the context of
a single form of implementation (for example, discussed only
as a method), the implementation of features discussed may
also be implemented in other forms (for example, an appara-
tus or program). An apparatus may be implemented in, for
example, appropriate hardware, software, and firmware. The
methods may be implemented in, for example, an apparatus
such as, for example, a processor, which refers to processing
devices in general, including, for example, a computer, a
microprocessor, an integrated circuit, or a programmable
logic device. Processing devices also include communication
devices, such as, for example, computers, cell phones, por-
table/personal digital assistants (“PDAs”), and other devices
that facilitate communication of information between end-
users.

Implementations of the various processes and features
described herein may be embodied in a variety of different
equipment or applications, particularly, for example, equip-
ment or applications associated with data encoding and
decoding.

Examples of equipment include video coders, video
decoders, video codecs, web servers, set-top boxes, laptops,
personal computers, cell phones, PDAs, and other communi-
cation devices. As should be clear, the equipment may be
mobile and even installed in a mobile vehicle.

Additionally, the methods may be implemented by instruc-
tions being performed by a processor, and such instructions
may be stored on a processor-readable medium such as, for
example, an integrated circuit, a software carrier or other
storage device such as, for example, a hard disk, a compact
diskette, a random access memory (“RAM”), or a read-only
memory (“ROM?”). The instructions may form an application
program tangibly embodied on a processor-readable
medium. As should be clear, a processor may include a pro-
cessor-readable medium having, for example, instructions for
carrying out a process. Such application programs may be
uploaded to, and executed by, a machine comprising any
suitable architecture. Preferably, the machine is implemented
on a computer platform having hardware such as one or more
central processing units (“CPU”), a random access memory
(“RAM”), and input/output (“I0”) interfaces. The computer
platform may also include an operating system and microin-
struction code. The various processes and functions described
herein may be either part of the microinstruction code or part

10

15

20

25

30

35

40

45

50

55

60

65

32

of the application program, or any combination thereof,
which may be executed by a CPU. In addition, various other
peripheral units may be connected to the computer platform
such as an additional data storage unit and a printing unit.

As should be evident to one of skill in the art, implemen-
tations may also produce a signal formatted to carry informa-
tion that may be, for example, stored or transmitted. The
information may include, for example, instructions for per-
forming a method, or data produced by one of the described
implementations. Such a signal may be formatted, for
example, as an electromagnetic wave (for example, using a
radio frequency portion of spectrum) or as a baseband signal.
The formatting may include, for example, encoding a data
stream, producing syntax, and modulating a carrier with the
encoded data stream and the syntax. The information that the
signal carries may be, for example, analog or digital informa-
tion. The signal may be transmitted over a variety of different
wired or wireless links, as is known.

It is to be further understood that, because some of the
constituent system components and methods depicted in the
accompanying drawings are preferably implemented in soft-
ware, the actual connections between the system components
or the process function blocks may differ depending upon the
manner in which the present principles are programmed.
Given the teachings herein, one of ordinary skill in the perti-
nent art will be able to contemplate these and similar imple-
mentations or configurations of the present principles.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made. For example, elements of different implemen-
tations may be combined, supplemented, modified, or
removed to produce other implementations. Additionally, one
of ordinary skill will understand that other structures and
processes may be substituted for those disclosed and the
resulting implementations will perform at least substantially
the same function(s), in at least substantially the same way(s),
to achieve at least substantially the same result(s) as the
implementations disclosed. In particular, although illustrative
embodiments have been described herein with reference to
the accompanying drawings, it is to be understood that the
present principles is not limited to those precise embodi-
ments, and that various changes and modifications may be
effected therein by one of ordinary skill in the pertinent art
without departing from the scope or spirit of the present
principles. Accordingly, these and other implementations are
contemplated by this application and are within the scope of
the following claims.

The invention claimed is:

1. A method comprising:

combining multiple pictures into a video picture, the mul-
tiple pictures including a first picture of a first view of a
multi-view video and a second picture of a second view
of the multi-view video in which a common object or
region appears shifted from one view to the other;

generating information indicating how the multiple pic-
tures are combined, wherein the generated information
indicates whether at least one of the multiple pictures is
individually flipped in one or both of a horizontal direc-
tion and a vertical direction;

encoding the video picture to provide an encoded repre-
sentation of the combined multiple pictures; and

providing the generated information and the encoded rep-
resentation as output.

2. The method of claim 1, wherein the first picture is

arranged alongside the second picture in the video picture.

US 9,219,923 B2
33 34

3. The method of claim 1, wherein the first picture is
arranged above the second picture in the video picture.

4. The method of claim 1, wherein pixels of the first and
second pictures are alternately interlaced.

#* #* #* #* #*

